
- •Тюмень 2003
- •Введение
- •Глава 1. Механизм и закономерность процессов взаимодействия металлов с агрессивными средами
- •1.1. Физико-химические основы коррозии металлов
- •1.2. Энергетическая характеристика перехода ионов в растворах при взаимодействии металла с электролитами
- •1.3. Электрохимический (электродный) потенциал
- •1.4. Электролиз. Химическое действие электрического тока
- •Электрохимические эквиваленты некоторых металлов и сплавов
- •1.5. Поляризационные и диполяризационные процессы
- •В результате деполяризации электрохимический потенциал металла сдвинется в положительную область, что приведет к увеличению скорости реакции растворения металла
- •Iкор I о ст Рис. 1.8. Диаграмма коррозии металла с водородной поляризацией
- •1.6. Взаимодействие стали и почвенного электролита
- •1.7. Способы защиты от коррозии
- •Глава 2. Пассивная защита от коррозии
- •2.1. Битумные покрытия
- •2.2. Полимерные покрытия
- •Защитные покрытия из полимерных липких лент
- •2.3. Оберточные рулонные материалы
- •2.4. Покрытия из напиленного и экструдированного полиэтилена
- •Контроль и требования к покрытиям стальных труб для подземных трубопроводов
- •2.5. Эпоксидные покрытия
- •2.6. Эмаль-этинолевое покрытие
- •2.7. Стеклоэмалевые покрытия
- •2.8. Номенклатура материалов, применяемых для изоляции трубопроводов
- •Материалы, применяемые для противокоррозионных
- •Основные характеристики отечественных изоляционных лент,
- •Основные характеристики импортных изоляционных лент,
- •2.9. Ремонт покрытия
- •Глава 3. Катодная защита подземных металлических сооружений
- •3.1. Принцип действия катодной защиты
- •Плотность тока, необходимая для катодной защиты
- •Минимальные защитные потенциалы
- •Максимальные защитные потенциалы
- •3.2. Расчет катодной защиты
- •Техническая характеристика комплектных анодных заземлителей
- •Коэффициент экранирования вертикальных трубчатых заземлителей, размещенных в ряд (в)
- •Проводник стали
- •Глава 4. Протекторная защита трубопроводов и резервуаров
- •4.1. Протекторная защита магистральных трубопроводов
- •Техническая характеристика комплексных протекторов пм-у
- •4.2. Протекторная защита днища стальных резервуаров от почвенной коррозии
- •Защитная плотность тока для изолированного стального сооружения (в мА/м2)
- •4.3. Расчет протекторной защиты с помощью групповых установок
- •Технико-экономические показатели резервуаров
- •Глава 5. Защита металлических сооружений от блуждающих токов
- •5.1. Источники появления блуждающих токов
- •5.2. Способы защиты от блуждающих токов
- •5.3. Электродренажная защита подземных трубопроводов
- •Расчет поляризованного дренажа
- •Значение коэффициентов к1 и к2
- •Выбор защитных установок и места их подключения к трубопроводу
- •Определение сечения дренажного кабеля
- •Допустимые значения u и Uк
- •Технические характеристики устройства поляризованной
- •Глава 6. Коррозионные измерения
- •6.1. Основные виды измерений
- •6.2. Определение агрессивности грунта Измерение удельного электрического сопротивления грунта
- •Определения коррозионной активности грунтов по потере массы стальных образцов
- •Коррозионная активность грунтов по отношению к углеродистой
- •Определения коррозионной активности грунтов по поляризационным кривым стальных образцов
- •Коррозионная активность грунтов по отношению
- •6.3. Определение блуждающих токов
- •Методика определения наличия блуждающих токов
- •Методика определения опасного действия переменного тока
- •6.4. Определение целостности изоляционного покрытия Метод контроля защитных покрытий по заданной прочности при ударе
- •Контроль адгезии защитных покрытий из полимерных лент
- •Контроль адгезии защитных покрытий на основе битумных мастик
- •Контроль состояния изоляционного покрытия при сооружении и ремонте трубопровода
- •Методика определения сопротивления вдавливанию
- •Определение переходного сопротивления покрытий по методу «мокрого» контакта
- •Метод интегральной оценки переходного сопротивления на действующих трубопроводах
- •6.5. Обследование эффективности катодной защиты Измерение разности потенциалов «труба-земля» и поляризационного потенциала на трубопроводе
- •Метод нахождения дефектных участков и определения состояния катодной защиты
- •6.6. Интенсивный метод измерений Двухэлектродный метод
- •Трехэлектродный метод
- •Критерии метода «интенсивной технологии»
- •6.7. Метод отключения источника поляризации и экстраполяция на нулевое время отключения
- •6.8. Экстраполяционные методы
- •6.9. Метод компенсации
- •6.10. Определение эффективности работы средств эхз. Проверка возможного наличия электрического контакта труба-футляр
- •6.11. Измерение сопротивления растеканию заземлений по методу Ампера-Вольтметра
- •Основные физико-химические свойства магния, цинка, алюминия и железа
- •Установка
- •Порядок проведения работы
- •Контрольные вопросы
- •Требование к отчету
- •Коррозийная активность грунтов
- •Установка
- •1. Метод измерения четырехэлектродной установкой
- •2. Измерение удельного электросопротивления грунта измерителем заземления мс-08
- •Порядок проведения работы
- •1. Метод измерения четырехэлектродной установкой
- •Контрольные вопросы
- •Требование к отчету
- •Установка
- •Порядок проведения работы
- •Контрольные вопросы
- •Требование к отчету
- •Установка
- •Контрольные вопросы
- •Требование к отчету
- •Список литературы
- •Противокоррозионная защита магистральных трубопроводов и промысловых объектов
- •Издательство «Нефтегазовый университет»
- •625000, Тюмень, ул. Володарского, 38
- •625000, Тюмень, ул. Володарского, 38
1.6. Взаимодействие стали и почвенного электролита
Согласно теории электрохимической коррозии разрушение металла обусловлено работой множества короткозамкнутых гальванических элементов, образующихся вследствие неоднородности среды и металла. При работе коррозийного элемента уменьшается разность начальных потенциалов, что сопровождается уменьшением коррозионного тока. Этот процесс называется поляризацией. Различают анодную и катодную поляризацию. При анодной поляризации, в случае усиленного растворения металла, ионы металла медленнее переходят в раствор, чем электроны отводятся в катодную область, и у поверхности электрода накапливаются положительные ионы металла, потенциал анода смещается в сторону положительных значений. Катодная поляризация сопровождается смещением потенциала электрода в отрицательную сторону и вызывается в основном малой скоростью электрохимической реакции соединения деполяризаторов с электронами. Участки, на которых растворяется металл, называются анодными, на них ион-атомы железа переходят в раствор, а на катодных - ток выходит в грунт. Электрохимические процессы на аноде и катоде различны, но взаимосвязаны, и, как правило, самостоятельно не протекают. Такая связанная система называется коррозионным микроэлементом. На анодных участках осуществляется окисление с образованием ионов металла Fe2+, а на катодных - под влиянием кислорода образуется гидроокись (в результате кислородной деполяризации)
(1.10)
Ионы железа и гидроксила взаимодействуют и образуют нерастворимый осадок Fe(ОН)2, который разлагается на окись железа и воду:
(1.11)
Высвобождающиеся при окислении электроны от анодного участка по металлу изделия протекают к катоду и участвуют в реакции восстановления (рис. 1.11).
В некоторых случаях возможны сложные процессы коррозии при одновременном воздействии двух или более факторов. К ним относятся коррозия под напряжением, щелевая, коррозионная эрозия, коррозионная кавитация. Скорость коррозионных процессов зависит от многих факторов, связанных как со свойствами, составом и строением металлического материала, так и со свойствами среды и внешними воздействиями. Для стальных трубопроводов, уложенных в грунт, скорость разрушения зависит во многом от коррозионности грунта, в частности, от типа грунта, состава и концентрации веществ, содержания влаги, проникновения воздуха в грунт, структуры грунта, температуры и удельного сопротивления грунта, наличия в грунте бактерий, активизирующих коррозионные процессы. Оценивается коррозионная активность грунта по величине его удельного электросопротивления (чем меньше , тем выше степень коррозии). Важной характеристикой грунта является и водородный показатель рН среды (увеличение скорости коррозии при уменьшении рН).
Рис. 1.11. Гальванический коррозионный элемент.
Схема взаимодействия стали и почвенного электролита
На интенсивность коррозии оказывает влияние неоднородность металла, механические напряжения, температуры и т.д. Неоднородность металла приводит к появлению коррозионных микроэлементов (микропар) в местах соприкосновения грунтов или в месте изменения физических свойств грунта. Коррозия может произойти и при образовании микропары из-за наличия макровключений – окалины, царапины, вмятины, наклепа, поперечных и продольных сварных швов, макроструктурной неоднородности физико-химических свойств почв (например, при неоднородном поступлении кислорода к поверхности трубопровода, расположенном под полотном дороги). Существенное влияние на скорость коррозии оказывает жизнедеятельность анаэробных бактерий, особенно в почвах, содержащих большее количество сульфатных солей. В этом случае происходит образование серной кислоты и усиление коррозионных процессов.