
- •Тюмень 2003
- •Введение
- •Глава 1. Механизм и закономерность процессов взаимодействия металлов с агрессивными средами
- •1.1. Физико-химические основы коррозии металлов
- •1.2. Энергетическая характеристика перехода ионов в растворах при взаимодействии металла с электролитами
- •1.3. Электрохимический (электродный) потенциал
- •1.4. Электролиз. Химическое действие электрического тока
- •Электрохимические эквиваленты некоторых металлов и сплавов
- •1.5. Поляризационные и диполяризационные процессы
- •В результате деполяризации электрохимический потенциал металла сдвинется в положительную область, что приведет к увеличению скорости реакции растворения металла
- •Iкор I о ст Рис. 1.8. Диаграмма коррозии металла с водородной поляризацией
- •1.6. Взаимодействие стали и почвенного электролита
- •1.7. Способы защиты от коррозии
- •Глава 2. Пассивная защита от коррозии
- •2.1. Битумные покрытия
- •2.2. Полимерные покрытия
- •Защитные покрытия из полимерных липких лент
- •2.3. Оберточные рулонные материалы
- •2.4. Покрытия из напиленного и экструдированного полиэтилена
- •Контроль и требования к покрытиям стальных труб для подземных трубопроводов
- •2.5. Эпоксидные покрытия
- •2.6. Эмаль-этинолевое покрытие
- •2.7. Стеклоэмалевые покрытия
- •2.8. Номенклатура материалов, применяемых для изоляции трубопроводов
- •Материалы, применяемые для противокоррозионных
- •Основные характеристики отечественных изоляционных лент,
- •Основные характеристики импортных изоляционных лент,
- •2.9. Ремонт покрытия
- •Глава 3. Катодная защита подземных металлических сооружений
- •3.1. Принцип действия катодной защиты
- •Плотность тока, необходимая для катодной защиты
- •Минимальные защитные потенциалы
- •Максимальные защитные потенциалы
- •3.2. Расчет катодной защиты
- •Техническая характеристика комплектных анодных заземлителей
- •Коэффициент экранирования вертикальных трубчатых заземлителей, размещенных в ряд (в)
- •Проводник стали
- •Глава 4. Протекторная защита трубопроводов и резервуаров
- •4.1. Протекторная защита магистральных трубопроводов
- •Техническая характеристика комплексных протекторов пм-у
- •4.2. Протекторная защита днища стальных резервуаров от почвенной коррозии
- •Защитная плотность тока для изолированного стального сооружения (в мА/м2)
- •4.3. Расчет протекторной защиты с помощью групповых установок
- •Технико-экономические показатели резервуаров
- •Глава 5. Защита металлических сооружений от блуждающих токов
- •5.1. Источники появления блуждающих токов
- •5.2. Способы защиты от блуждающих токов
- •5.3. Электродренажная защита подземных трубопроводов
- •Расчет поляризованного дренажа
- •Значение коэффициентов к1 и к2
- •Выбор защитных установок и места их подключения к трубопроводу
- •Определение сечения дренажного кабеля
- •Допустимые значения u и Uк
- •Технические характеристики устройства поляризованной
- •Глава 6. Коррозионные измерения
- •6.1. Основные виды измерений
- •6.2. Определение агрессивности грунта Измерение удельного электрического сопротивления грунта
- •Определения коррозионной активности грунтов по потере массы стальных образцов
- •Коррозионная активность грунтов по отношению к углеродистой
- •Определения коррозионной активности грунтов по поляризационным кривым стальных образцов
- •Коррозионная активность грунтов по отношению
- •6.3. Определение блуждающих токов
- •Методика определения наличия блуждающих токов
- •Методика определения опасного действия переменного тока
- •6.4. Определение целостности изоляционного покрытия Метод контроля защитных покрытий по заданной прочности при ударе
- •Контроль адгезии защитных покрытий из полимерных лент
- •Контроль адгезии защитных покрытий на основе битумных мастик
- •Контроль состояния изоляционного покрытия при сооружении и ремонте трубопровода
- •Методика определения сопротивления вдавливанию
- •Определение переходного сопротивления покрытий по методу «мокрого» контакта
- •Метод интегральной оценки переходного сопротивления на действующих трубопроводах
- •6.5. Обследование эффективности катодной защиты Измерение разности потенциалов «труба-земля» и поляризационного потенциала на трубопроводе
- •Метод нахождения дефектных участков и определения состояния катодной защиты
- •6.6. Интенсивный метод измерений Двухэлектродный метод
- •Трехэлектродный метод
- •Критерии метода «интенсивной технологии»
- •6.7. Метод отключения источника поляризации и экстраполяция на нулевое время отключения
- •6.8. Экстраполяционные методы
- •6.9. Метод компенсации
- •6.10. Определение эффективности работы средств эхз. Проверка возможного наличия электрического контакта труба-футляр
- •6.11. Измерение сопротивления растеканию заземлений по методу Ампера-Вольтметра
- •Основные физико-химические свойства магния, цинка, алюминия и железа
- •Установка
- •Порядок проведения работы
- •Контрольные вопросы
- •Требование к отчету
- •Коррозийная активность грунтов
- •Установка
- •1. Метод измерения четырехэлектродной установкой
- •2. Измерение удельного электросопротивления грунта измерителем заземления мс-08
- •Порядок проведения работы
- •1. Метод измерения четырехэлектродной установкой
- •Контрольные вопросы
- •Требование к отчету
- •Установка
- •Порядок проведения работы
- •Контрольные вопросы
- •Требование к отчету
- •Установка
- •Контрольные вопросы
- •Требование к отчету
- •Список литературы
- •Противокоррозионная защита магистральных трубопроводов и промысловых объектов
- •Издательство «Нефтегазовый университет»
- •625000, Тюмень, ул. Володарского, 38
- •625000, Тюмень, ул. Володарского, 38
6.5. Обследование эффективности катодной защиты Измерение разности потенциалов «труба-земля» и поляризационного потенциала на трубопроводе
Критерием эффективности катодной защиты является потенциал на границе фаз «труба-земля». При этом в зависимости от условий грунта нужно учитывать различные значения критерия защитного потенциала:
• UCu/CuSO4 = - 0,65 В - для песчаных почв с удельным сопротивлением грунта > 1000 Ом;
• UCu/CuSO4 = - 0,75 В - для песчаных почв с удельным сопротивлением грунта 500 Ом;
• UCu/CuSO4 = - 0,85 В – для, в средней степени, аэрируемых грунтов;
• UCu/CuSO4 = - 0,95 В - для песчаных анаэробных почв.
Если электролит представляет собой жидкость, то границу фаз можно легко достичь при помощи электрода сравнения. Однако на проложенных под землей трубопроводах измерение на границе фаз (например, в месте повреждения покрытия) невозможно. При измерении на поверхности земли целый ряд воздействующих величин искажает величину потенциала без омической составляющей.
Рис. 6.13. Эквивалентная схема электрического обнаружения дефекта
На (рис. 6.13) показана эквивалентная схема электрического обнаружения дефекта покрытия на катодно-защищенном трубопроводе. С одной стороны, здесь имеется источник напряжения (символизирует потенциал на границе фаз), с другой стороны - сопротивление растеканию, где блуждающие токи, защитный ток и уравнительный ток вызывают падение напряжения. Для элиминирования падения напряжения, обусловленного защитным током, он циклически включается и отключается через определённые промежутки времени (например: 4 сек. включения - 2 сек. выключения).
Этот метод, определяемый как метод измерения потенциалов отключения, используется с начала 70-х годов, для этого перед началом измерения на всех катодных станциях системы защиты должны быть установлены синхронно работающие реле времени. Используемые в настоящее время приборы синхронизируются от радиосигнала DCF (f = 77/5 kH), а при отсутствии радиосигнала времени, обусловленного условиями приёма, имеют высокоточные встроенные часы, гарантирующие достаточную синхронность на протяжении многих дней. Там, где сигнал не принимается, используются приборы со встроенным базисом времени высокой точности.
Пример записи потенциалов «объект-грунт» приведены на рис. 6.14.
Рис. 6.14. Потенциалы «объект-грунт»
Поляризационный потенциал трубопровода можно измерить в специально оборудованном контрольно-измерительном пункте (КИП) с помощью МЭС длительного действия с датчиком электрохимического потенциала. Поляризационный потенциал измеряют с помощью прерывателя тока и вольтметра, схема подключения которых к КИП приведена на рис. 6.15.
Рис. 6.15. Схема измерения поляризационного потенциала
в контрольно-измерительном пункте:
1 - прерыватель тока; 2 - датчик электрохимического потенциала;
3 - электрод сравнения; 4 - трубопровод
Измерение поляризационного потенциала производят следующим образом: размыкают контрольные проводники от трубопровода 4 и датчика 2; к соответствующим клеммам прерывателя тока 1 присоединяют контрольные проводники от трубопровода 4, датчика 2, электрода сравнения 3 и вольтметра, имеющего внутреннее сопротивление не менее 20 кОм на 1 В шкалы и пределы измерений 1-0-1, 3-0-3; включают прерыватель тока. Через 10 мин. после включения прерывателя тока снимают первое показание вольтметра; следующие показатели снимают через каждые 5 с. Средние значения поляризационных (защитных) потенциалов не должны выходить за пределы минимально и максимально допустимых величин.