Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы.docx
Скачиваний:
0
Добавлен:
27.12.2019
Размер:
2.25 Mб
Скачать

Источники магнитного поля

Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Напряжённость магнитного поля

НАПРЯЖЁННОСТЬ МАГНИТНОГО ПОЛЯ - аксиальный вектор H(r, t), определяющий [наряду с вектором магнитной индукции B(r, t)]свойства макроско-пич. магн. поля. В случае вакуума двухвекторное описание магн. поля является чисто формальным, поэтому в гауссовой системе единиц в вакууме B=H, хотя, в силу традиций, и измеряются в единицах с разным наименованием: В - в гауссах (Гс), aH - в эрстедах (Э). В СИ сохраняется различие и для вакуума: B= m0 H, где m0 - магнитная постоянная .Измеряется H. м. п. в СИ в амперах на метр (А/м), 1 A/м = = 4p.10-3Э.

В соответствии с первым Максвелла уравнением источниками H. м. п. являются электрич. токи (проводимости, смещения и т. п.):

где jjCM - плотность тока, переносимого зарядами, и плотность тока смещения, D - вектор электрической индукции (здесь и далее применяется гауссова система единиц). В среде могут также присутствовать токи намагничивания с плотностью jм, связанные с индуцированной и (или) спонтанной намагниченностью M; jм = с[ M]. Эти токи и обусловливают различие векторов поля В и H:

В этом отношении существует принципиальная разница между пост. и переменными во времени полями. В пост. полях ур-ние (2) (к-рое иногда наз. материальным ур-нием или ур-нием среды) автономно, в перем. полях оно зависит от вида материальной связи между электрич. векторами: D = D(E) = E + 4pPe (E - напряжённость электрического поля, Pe - вектор электрической поляризации), потому что вихревая составляющая плотности перем. тока j может быть с известным произволом интерпретирована и как плотность тока поляризацииjп = дPe/дt, и как плотность тока намагничивания jм. В общем случае:

Поэтому определение H. м. п. в случае перем. полей условно и зависит от принятых материальных связей. В ВЧ-электродинамике иногда вообще не различают векторов В и H, относя все токи к токам поляризации. Принципиальным является вопрос о том, какой из векторов, В или H, берётся в качестве "первичного". Историч. традиция выбрала в качестве такового вектор H, с чем и связано его название - H. м. п. Поэтому ур-ние (2) трактовалось как зависимость вектора В от "первичного" поля HB = H+ 4pM = mH (m- магнитная проницаемость ).Однако впоследствии оказалось, что истинно первичным целесообразнее считать вектор магн. индукции В, совпадающий с усредненной по физически малому объёму напряжённостью микроскопич. магн. поля в вакууме (см. Лоренца - Максвелла уравнения).

31.Плотность тока и сила тока. Магнитное поле постоянного тока. Закон Био-Савара-Лапласа. Теорема о циркуляции магнитного поля.

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы тока, протекающего через единицу площади. Например, при равномерном распределении плотности тока и всюду ортогональности ее плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока:

где I - сила тока через поперечное сечение проводника площадью S (также см.рисунок).

  • (Иногда речь может идти о скалярной[1] плотности тока, в таких случаях под ней подразумевается именно та величина j, которая приведена в формуле чуть выше).

В общем случае:

,

где   — нормальная (ортогональная) составляющая вектора плотности тока по отношению к элементу площади  ; вектор   - специально вводимый вектор элемента площади, ортогональный элементарной площадке и имеющий абсолютную величину, равную ее площади, позволяющий записать подынтегральное выражение как обычное скалярное произведение.

Как видим из этого определения, сила тока есть поток вектора плотности тока через некую заданную фиксированную поверхность.

В простейшем предположении, что все носители тока (заряженные частицы) двигаются с одинаковым вектором скорости   и имеют одинаковые заряды   (такое предположение может иногда быть приближенно верным; оно позволяет лучше всего понять физический смысл плотности тока), а концентрация их  ,

или

где   - плотность заряда этих носителей. (Направление вектора   соответствует направлению вектора скорости  , с которой движутся заряды, создающие ток, если q положително).

В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под   следует понимать среднюю скорость.

В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах)

то есть вектор плотности тока есть сумма плотностей тока по всем типам подвижных носителей; где   - концентрация частиц каждого типа,   - заряд частицы данного типа,   - вектор средней скорости частиц этого типа.

Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам:

(сама формула почти совпадает с формулой, приведенной чуть выше, но теперь индекс суммирования i означает не номер типа частицы, а номер каждой индивидуальной частицы, не важно, имеют они одинаковые заряды или разные, при этом концентрации оказываются уже не нужны).

Сила тока

Силой тока называется физическая величина  , равная отношению количества заряда  , прошедшего за некоторое время   через поперечное сечение проводника, к величине этого промежутка времени.

Сила тока в Международной системе единиц (СИ) измеряется в амперах.

По закону Ома сила тока   для участка цепи прямо пропорциональна приложенному напряжению   к участку цепи и обратно пропорциональна сопротивлению   проводника этого участка цепи :

 — где e — заряд электрона, n — концентрация частиц, S — площадь поперечного сечения проводника,   — средняя скорость упорядоченного движения электронов.

Единица измерения в СИ — 1 Ампер (А) = 1 Кулон / секунду.

Для измерения силы тока используют специальный прибор — амперметр (для приборов, предназначенных для измерения малых токов, также используются названия миллиамперметр, микроамперметр, гальванометр). Его включают в разрыв цепи в том месте, где нужно измерить силу тока. Основные методы измерения силы тока: магнитоэлектрический, электромагнитный и косвенный (путём измерения вольтметром напряжения на известном сопротивлении).

В случае переменного тока различают мгновенную силу тока, амплитудную (пиковую) силу тока и эффективную силу тока (равную силе постоянного тока, который выделяет такую же мощность).