
- •1. Развитие представлений о пространстве и времени в доньютоновский период
- •2. Пространство и время в классической механике Ньютона
- •3. Дальнедействие и близкодействие. Развитие понятия «поля»
- •Скорость
- •Ускорение
- •Равномерное движение
- •[Править]Равномерное движение по окружности
- •Равнопеременное движение
- •2.Криволинейное движение. Тангенциальное и нормальное ускорения
- •Импульс тела
- •4.Теорема об изменении кинетической энергии. Потенциальные силы, потенциальная энергия. Условия сохранения механической энергии. Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Потенциальные силы
- •Закон Сохранения Механической Энергии
- •5.Закон изменения импульса. Импульс силы. Центр масс. Скорость центра масс. Система центра масс. Условия сохранения импульса.
- •[Править]Закон сохранения
- •Определение
- •Центры масс однородных фигур
- •В механике
- •Центр масс в релятивистской механике
- •Центр тяжести
- •Система центра масс
- •6.Момент импульса материальной точки и твердого тела. Момент силы. Момент инерции. Закон изменения момента импульса. Условия сохранения момента импульса.
- •Теорема Гюйгенса-Штейнера
- •Осевые моменты инерции некоторых тел
- •7.Закон всемирного тяготения и законы Кеплера. Первая и вторая космические скорости.
- •Вычисление
- •Вычисление
- •8.Гидродинамика идеальной жидкости. Уравнения Эйлера. Уравнение непрерывности. Уравнение Бернулли.
- •Утверждение
- •Уравнение непрерывности
- •Уравнение Бернулли
- •9.Гидродинамика вязкой жидкости. Течение Пуазейля. Движение тел в вязкой жидкости. Формула Стокса. Гидродинамика вязкой жидкости Введение
- •1. Коэффициент вязкости. Течение по трубе
- •2. Формула Пуазейля.
- •3. Формула Стокса.
- •Постановка задачи
- •[Править]Закон Пуазёйля (Хагена — Пуазёйля)
- •[Править]Свойства
- •[Править]Применимость на практике
- •10.Теория относительности. Мировые линии. Интервал. Преобразования Лоренца. Сокращение длины. Замедление времени. Энергия и импульс.
- •Определение
- •Преобразования Лоренца в физике
- •[Править]Вид преобразований при коллинеарных (параллельных) пространственных осях
- •Вывод преобразований
- •Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- •Преобразования Лоренца в матричном виде
- •Свойства преобразований Лоренца
- •11.Тепловое равновесие. Температура и количество теплоты. Различные шкалы температур. Теплоемкость тела. Молярная и удельная теплоемкости. Уравнение теплового баланса.
- •Удельная теплоёмкость
- •Уравнение Теплового Баланса
- •12.Внутренняя энергия. Работа газа. Первое начало термодинамики. Опыты Румфорда, Дэви, Джоуля. Механический эквивалент теплоты. Внутренняя энергия идеального газа.
- •[Править]Идеальные газы
- •Формулировка
- •Опыты Румфорда, Дэви, Джоуля Научная деятельность
- •Механический эквивалент теплоты
- •Внутренняя энергия идеального газа
- •13.Тепловые машины (тепловые двигатели). Определение их коэффициента полезного действия. Цикл Карно. Вывод формулы к.П.Д. Цикла Карно. Холодильные машины. Холодильный коэффициент.
- •14.Обратимые и необратимые процессы. Примеры. Второе начало термодинамики. Определение энтропии как функции состояния. Формула энтропии идеального газа.
- •Обратимые и необратимые процессы. Круговой процесс
- •Второе начало термодинамики
- •Энтропия
- •Классический идеальный газ
- •Связь с другими законами состояния идеального газа
- •Теплоемкости при постоянном давлении и постоянном объеме
- •Адиабатический процесс
- •16.Применение законов Ньютона и теории вероятностей к вычислению давления идеального газа. Изотропия скоростей молекул. Средняя квадратичная скорость и абсолютная температура. Законы идеального газа
- •Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа
- •Абсолютная температура. Шкала температур Кельвина
- •17.Распределение Максвелла молекул по скоростям. Наиболее вероятная, средняя и средняя квадратичная скорости. Опытное подтверждение формулы Максвелла. Распределение Максвелла
- •18.Фазовое пространство. Потенциальная и кинетическая энергия молекул. Распределение Больцмана. Барометрическая формула. Опытное определение постоянной Больцмана.
- •Механические системы
- •Динамические системы
- •Случай нескольких систем
- •Примеры
- •Больцмана распределение
- •Барометрическая формула
- •Постоянная Больцмана
- •Связь между температурой и энергией
- •Определение энтропии
- •19.Взаимодействие молекул в газе. Эффективный диаметр молекул. Вычисление среднего числа соударений и длины свободного пробега. Силы взаимодействия молекул
- •Среднее число столкновений и средняя длина свободного пробега молекул
- •20.Явления переноса: диффузия, теплопроводность, вязкость. Зависимость их коэффициентов от длины свободного пробега. Явления переноса.
- •Диффузия
- •Теплопроводность
- •Внутреннее трение
- •21.Термодинамическая вероятность (статистический вес). Формула Больцмана для энтропии. Термодинамическое равновесие с точки зрения теории вероятностей. Флуктуации. Средняя квадратичная флуктуация.
- •Энтропия Больцмана
- •22.Поверхностное натяжение. Коэффициент поверхностного натяжения. Формула Лапласа. Капиллярные явления. Испарение и конденсация. Насыщенный пар. Влажность. Поверхностное натяжение
- •Коэффициент поверхностного натяжения.
- •Капиллярные явления
- •23.Реальные газы. Уравнение Ван-дер-Ваальса. Фазовые переходы. Критическая температура и давление.
- •Физика реального газа
- •Фазовый переход
- •24.Электрический заряд в природе. Закон сохранения электрического заряда в интегральной и дифференциальной форме.
- •Закон сохранения заряда в интегральной форме
- •Закон сохранения заряда в дифференциальной форме
- •25.Закон Кулона. Напряженность электрического поля e. Силовые линии. Теорема Гаусса и решение задач с ее помощью.
- •Коэффициент k
- •Напряженность электрического поля
- •Силовые линии электрического поля
- •Применение теоремы Гаусса
- •Расчет напряженности поля сферически симметричного распределения заряда
- •Расчёт напряжённости поля бесконечной плоскости
- •Расчёт напряжённости поля бесконечной нити
- •Другие задачи
- •Следствия из теоремы Гаусса
- •26.Потенциал и потенциальная энергия в электростатике. Энергия системы точечных зарядов, энергия уединенного проводника. Потенциальная энергия электростатического поля
- •Потенциал электростатического поля
- •27.Проводники в электростатике. Емкость проводника. Емкость плоского конденсатора.
- •28.Параллельное и последовательное соединения конденсаторов. Энергия заряженного конденсатора. Плотность энергии электрического поля.
- •Энергия заряженного конденсатора
- •Плотность энергии электрического поля
- •29.Поле электрического диполя. Диэлектрики в электрическом поле. Поляризуемость и диэлектрическая проницаемость. Поле электрического смещения d.
- •Поле диполя
- •Диполь в электрическом поле
- •Диэлектрики в электрическом поле
- •Источники магнитного поля
- •Напряжённость магнитного поля
- •31.Плотность тока и сила тока. Магнитное поле постоянного тока. Закон Био-Савара-Лапласа. Теорема о циркуляции магнитного поля.
- •§12. Постоянное магнитное поле
- •12.13 Применение теоремы о циркуляции к расчету магнитного поля.
- •12.13.1 Поле цилиндрического проводника с током.
- •12.13.2 Поле пластины с током.
- •12.13.3 Поле соленоида.
- •Практическое значение
- •32.Сила Лоренца и сила Ампера. Движение электрического заряда в постоянном электрическом и в постоянном магнитном поле. Лоренца сила
- •33.Постоянный ток в металлах. Вывод закона Ома из классической и статистической механики. Средняя скорость дрейфа электронов.
- •Вывод закона Ома в дифференциальной форме в классической электронной теории
- •35.Законы Кирхгофа для сложных цепей. Разность потенциалов между концами участка цепи, содержащего э.Д.С.
- •Разность потенциалов
- •Связь напряженности с разностью потенциалов в однородном электрическом поле
- •Связь напряженности с потенциалом в поле точечного заряда-источника
- •36.Постоянный ток в электролитах. Законы Фарадея. Число Фарадея.
- •Формулировка законов
- •Математический вид
- •37.Закон электромагнитной индукции в интегральной и дифференциальной форме. Э.Д.С. Самоиндукции. Правило Ленца. Уравнения Максвелла в интегральной форме
- •6.2. Уравнения Максвелла в дифференциальной форме
- •Самоиндукция. Энергия магнитного поля
- •[Править]Физическая суть правила
- •38.Коэффициенты взаимной индукции и индуктивность. Индуктивность соленоида (катушки) цилиндрической формы.
- •Индуктивность соленоида
- •39.Энергия магнитного поля соленоида (катушки). Плотность энергии магнитного поля.
- •40.Система уравнений Максвелла как совокупность законов электромагнетизма. Дивергенция и ротор как векторные дифференциальные операторы.
Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа
Таблица значений средней квадратичной скорости молекул некоторых газов
Для того чтоб понять, откуда же у нас получается эта формула, мы выведем среднюю квадратичную скорость молекул. Вывод формулы начинается с основного уравнения молекулярно кинетический теории (МКТ):
Где
у
нас количество вещества, для более
легкого доказательства, возьмем на
рассмотрение 1 моль вещества, тогда у
нас получается:
Если посмотреть, то PV это две третьих средней кинетической энергии всех молекул (а у нас взят 1 моль молекул):
Тогда, если приравнять правые части, у нас получается, что для 1 моля газа средняя кинетическая энергия будет равняться:
Но средняя кинетическая энергия, так же находится, как :
А
вот теперь, если мы приравняем правые
части и выразим из них скорость и возьмем
квадрат,Число Авогадро на массу молекулы
, получается Молярная масса
то
у нас и получится формула для средней
квадратичной скорости молекулы газа:
А
если расписать универсальную газовую
постоянную, как
,
и за одно молярную массу
,
то у нас получится?
Абсолютная температура. Шкала температур Кельвина
Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры — кельвин (К).
Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры — абсолютный ноль, то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.
Абсолютный ноль определён как 0 K, что равно −273.15 °C.
Шкала температур Кельвина — это шкала, в которой начало отсчёта ведётся от абсолютного нуля.
Важное значение имеет разработка на основе термодинамической шкалы Кельвина Международных практических шкал, основанных на реперных точках — фазовых переходах чистых веществ, определенных методами первичной термометрии. Первой международной температурной шкалой являлась принятая в 1927 г. МТШ-27. С 1927 г. шкала несколько раз переопределялась (МТШ-48, МПТШ-68, МТШ-90): менялись реперные температуры, методы интерполяции, но принцип остался тот же — основой шкалы является набор фазовых переходов чистых веществ с определенными значениями термодинамических температур и интерполяционные приборы, градуированные в этих точках. В настоящее время действует шкала МТШ-90. Основной документ (Положение о шкале) устанавливает определение Кельвина, значения температур фазовых переходов (реперных точек)[9] и методы интерполяции.
Используемые в быту температурные шкалы — как Цельсия, так и Фаренгейта (используемая, в основном, в США), — не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.
Одна из них называется шкалой Ранкина, а другая — абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что цена одного деления по шкале Кельвина равна цене деления шкалы Цельсия, а цена деления шкалы Ранкина эквивалентна цене деления термометров со шкалой Фаренгейта. Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K, 0 °C, 32 °F.
Масштаб шкалы Кельвина привязан к тройной точке воды (273,16 К), при этом от неё зависит постоянная Больцмана. Это создаёт проблемы с точностью интерпретации измерений высоких температур. Сейчас Международное бюро мер и весов рассматривает возможность перехода к новому определению кельвина и фиксированию постоянной Больцмана, вместо привязки к температуре тройной точки.[10].