
- •1. Развитие представлений о пространстве и времени в доньютоновский период
- •2. Пространство и время в классической механике Ньютона
- •3. Дальнедействие и близкодействие. Развитие понятия «поля»
- •Скорость
- •Ускорение
- •Равномерное движение
- •[Править]Равномерное движение по окружности
- •Равнопеременное движение
- •2.Криволинейное движение. Тангенциальное и нормальное ускорения
- •Импульс тела
- •4.Теорема об изменении кинетической энергии. Потенциальные силы, потенциальная энергия. Условия сохранения механической энергии. Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Потенциальные силы
- •Закон Сохранения Механической Энергии
- •5.Закон изменения импульса. Импульс силы. Центр масс. Скорость центра масс. Система центра масс. Условия сохранения импульса.
- •[Править]Закон сохранения
- •Определение
- •Центры масс однородных фигур
- •В механике
- •Центр масс в релятивистской механике
- •Центр тяжести
- •Система центра масс
- •6.Момент импульса материальной точки и твердого тела. Момент силы. Момент инерции. Закон изменения момента импульса. Условия сохранения момента импульса.
- •Теорема Гюйгенса-Штейнера
- •Осевые моменты инерции некоторых тел
- •7.Закон всемирного тяготения и законы Кеплера. Первая и вторая космические скорости.
- •Вычисление
- •Вычисление
- •8.Гидродинамика идеальной жидкости. Уравнения Эйлера. Уравнение непрерывности. Уравнение Бернулли.
- •Утверждение
- •Уравнение непрерывности
- •Уравнение Бернулли
- •9.Гидродинамика вязкой жидкости. Течение Пуазейля. Движение тел в вязкой жидкости. Формула Стокса. Гидродинамика вязкой жидкости Введение
- •1. Коэффициент вязкости. Течение по трубе
- •2. Формула Пуазейля.
- •3. Формула Стокса.
- •Постановка задачи
- •[Править]Закон Пуазёйля (Хагена — Пуазёйля)
- •[Править]Свойства
- •[Править]Применимость на практике
- •10.Теория относительности. Мировые линии. Интервал. Преобразования Лоренца. Сокращение длины. Замедление времени. Энергия и импульс.
- •Определение
- •Преобразования Лоренца в физике
- •[Править]Вид преобразований при коллинеарных (параллельных) пространственных осях
- •Вывод преобразований
- •Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- •Преобразования Лоренца в матричном виде
- •Свойства преобразований Лоренца
- •11.Тепловое равновесие. Температура и количество теплоты. Различные шкалы температур. Теплоемкость тела. Молярная и удельная теплоемкости. Уравнение теплового баланса.
- •Удельная теплоёмкость
- •Уравнение Теплового Баланса
- •12.Внутренняя энергия. Работа газа. Первое начало термодинамики. Опыты Румфорда, Дэви, Джоуля. Механический эквивалент теплоты. Внутренняя энергия идеального газа.
- •[Править]Идеальные газы
- •Формулировка
- •Опыты Румфорда, Дэви, Джоуля Научная деятельность
- •Механический эквивалент теплоты
- •Внутренняя энергия идеального газа
- •13.Тепловые машины (тепловые двигатели). Определение их коэффициента полезного действия. Цикл Карно. Вывод формулы к.П.Д. Цикла Карно. Холодильные машины. Холодильный коэффициент.
- •14.Обратимые и необратимые процессы. Примеры. Второе начало термодинамики. Определение энтропии как функции состояния. Формула энтропии идеального газа.
- •Обратимые и необратимые процессы. Круговой процесс
- •Второе начало термодинамики
- •Энтропия
- •Классический идеальный газ
- •Связь с другими законами состояния идеального газа
- •Теплоемкости при постоянном давлении и постоянном объеме
- •Адиабатический процесс
- •16.Применение законов Ньютона и теории вероятностей к вычислению давления идеального газа. Изотропия скоростей молекул. Средняя квадратичная скорость и абсолютная температура. Законы идеального газа
- •Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа
- •Абсолютная температура. Шкала температур Кельвина
- •17.Распределение Максвелла молекул по скоростям. Наиболее вероятная, средняя и средняя квадратичная скорости. Опытное подтверждение формулы Максвелла. Распределение Максвелла
- •18.Фазовое пространство. Потенциальная и кинетическая энергия молекул. Распределение Больцмана. Барометрическая формула. Опытное определение постоянной Больцмана.
- •Механические системы
- •Динамические системы
- •Случай нескольких систем
- •Примеры
- •Больцмана распределение
- •Барометрическая формула
- •Постоянная Больцмана
- •Связь между температурой и энергией
- •Определение энтропии
- •19.Взаимодействие молекул в газе. Эффективный диаметр молекул. Вычисление среднего числа соударений и длины свободного пробега. Силы взаимодействия молекул
- •Среднее число столкновений и средняя длина свободного пробега молекул
- •20.Явления переноса: диффузия, теплопроводность, вязкость. Зависимость их коэффициентов от длины свободного пробега. Явления переноса.
- •Диффузия
- •Теплопроводность
- •Внутреннее трение
- •21.Термодинамическая вероятность (статистический вес). Формула Больцмана для энтропии. Термодинамическое равновесие с точки зрения теории вероятностей. Флуктуации. Средняя квадратичная флуктуация.
- •Энтропия Больцмана
- •22.Поверхностное натяжение. Коэффициент поверхностного натяжения. Формула Лапласа. Капиллярные явления. Испарение и конденсация. Насыщенный пар. Влажность. Поверхностное натяжение
- •Коэффициент поверхностного натяжения.
- •Капиллярные явления
- •23.Реальные газы. Уравнение Ван-дер-Ваальса. Фазовые переходы. Критическая температура и давление.
- •Физика реального газа
- •Фазовый переход
- •24.Электрический заряд в природе. Закон сохранения электрического заряда в интегральной и дифференциальной форме.
- •Закон сохранения заряда в интегральной форме
- •Закон сохранения заряда в дифференциальной форме
- •25.Закон Кулона. Напряженность электрического поля e. Силовые линии. Теорема Гаусса и решение задач с ее помощью.
- •Коэффициент k
- •Напряженность электрического поля
- •Силовые линии электрического поля
- •Применение теоремы Гаусса
- •Расчет напряженности поля сферически симметричного распределения заряда
- •Расчёт напряжённости поля бесконечной плоскости
- •Расчёт напряжённости поля бесконечной нити
- •Другие задачи
- •Следствия из теоремы Гаусса
- •26.Потенциал и потенциальная энергия в электростатике. Энергия системы точечных зарядов, энергия уединенного проводника. Потенциальная энергия электростатического поля
- •Потенциал электростатического поля
- •27.Проводники в электростатике. Емкость проводника. Емкость плоского конденсатора.
- •28.Параллельное и последовательное соединения конденсаторов. Энергия заряженного конденсатора. Плотность энергии электрического поля.
- •Энергия заряженного конденсатора
- •Плотность энергии электрического поля
- •29.Поле электрического диполя. Диэлектрики в электрическом поле. Поляризуемость и диэлектрическая проницаемость. Поле электрического смещения d.
- •Поле диполя
- •Диполь в электрическом поле
- •Диэлектрики в электрическом поле
- •Источники магнитного поля
- •Напряжённость магнитного поля
- •31.Плотность тока и сила тока. Магнитное поле постоянного тока. Закон Био-Савара-Лапласа. Теорема о циркуляции магнитного поля.
- •§12. Постоянное магнитное поле
- •12.13 Применение теоремы о циркуляции к расчету магнитного поля.
- •12.13.1 Поле цилиндрического проводника с током.
- •12.13.2 Поле пластины с током.
- •12.13.3 Поле соленоида.
- •Практическое значение
- •32.Сила Лоренца и сила Ампера. Движение электрического заряда в постоянном электрическом и в постоянном магнитном поле. Лоренца сила
- •33.Постоянный ток в металлах. Вывод закона Ома из классической и статистической механики. Средняя скорость дрейфа электронов.
- •Вывод закона Ома в дифференциальной форме в классической электронной теории
- •35.Законы Кирхгофа для сложных цепей. Разность потенциалов между концами участка цепи, содержащего э.Д.С.
- •Разность потенциалов
- •Связь напряженности с разностью потенциалов в однородном электрическом поле
- •Связь напряженности с потенциалом в поле точечного заряда-источника
- •36.Постоянный ток в электролитах. Законы Фарадея. Число Фарадея.
- •Формулировка законов
- •Математический вид
- •37.Закон электромагнитной индукции в интегральной и дифференциальной форме. Э.Д.С. Самоиндукции. Правило Ленца. Уравнения Максвелла в интегральной форме
- •6.2. Уравнения Максвелла в дифференциальной форме
- •Самоиндукция. Энергия магнитного поля
- •[Править]Физическая суть правила
- •38.Коэффициенты взаимной индукции и индуктивность. Индуктивность соленоида (катушки) цилиндрической формы.
- •Индуктивность соленоида
- •39.Энергия магнитного поля соленоида (катушки). Плотность энергии магнитного поля.
- •40.Система уравнений Максвелла как совокупность законов электромагнетизма. Дивергенция и ротор как векторные дифференциальные операторы.
Механический эквивалент теплоты
МЕХАНИЧЕСКИЙ ЭКВИВАЛЕНТ ТЕПЛОТЫ - количество работы, эквивалентное единице количества теплоты (1 кал или 1 ккал). Понятие M. э. т. возникло с установлением эквивалентности механич. работы ц теплоты и открытием энергии сохранения ,закона. Введение M. э. т. потребовалось для сопоставления значений этих физ. величин, измерявшихся в разл. единицах. Экспериментально установлено, что 1 ккал = 426,9 кгс*м.
В Международной системе единиц СИ для работы и кол-ва теплоты принята одна единица измерения - джоуль (1 Дж = 0,239 кал = 0,102 кгс*м), поэтому пользоваться понятием M. э. т. нет необходимости.
Внутренняя энергия идеального газа
Внутренней энергией тела называют часть его полной энергии за вычетом кинетической энергии движения тела как целого и потенциальной энергии тела во внешнем поле. Таким образом, во внутреннюю энергию входят кинетическая энергия поступательного и вращательного движений молекул, потенциальная энергия их взаимодействия, энергия колебательного движения атомов в молекулах, а также энергия различных видов движения частиц в атомах.
В идеальном газе потенциальная энергия взаимодействия молекул пренебрежимо мала и внутренняя энергия равна сумме энергий отдельных молекул
,
(2.24)
где Ei —
энергия отдельной молекулы. До сих пор
мы пользовались представлением о
молекулах как о материальных точках.
Кинетическая энергия молекул считалась
совпадающей с энергией их поступательного
движения, а средняя кинетическая энергия
молекулы полагалась равной
.
Эта энергия распределяется между тремя
поступательными степенями свободы.
Ввиду полной беспорядочности движения молекул в газе все направления перемещения молекулы равновероятны. Поэтому на каждую степень свободы поступательного движения приходится в среднем энергия
.
Представление о молекулах как о материальных точках оправдывается только для одноатомных газов. В случае многоатомных газов нужно рассматривать молекулы как сложные системы, способные вращаться как целое, причем атомы в них могут совершать колебания вблизи своих положений равновесия. Общее число степеней свободы молекулы при этом увеличивается.
Вспомним, что числом степеней свободы механической системы называется количество независимых параметров, с помощью которых может быть задано положение системы. Так, положение материальной точки в пространстве определяется заданием значений трех ее координат. В соответствии с этим материальная точка имеет три степени свободы.
Положение абсолютно твердого тела можно определить, задав три координаты его центра инерции и три угла, характеризующие возможные повороты тела в пространстве. Таким образом, абсолютно твердое тело имеет шесть степеней свободы — три поступательных и три вращательных.
N материальных точек, не связанных между собой, имеют 3N степеней свободы. Поскольку положение в пространстве системы как целого точно так же, как и положение абсолютно твердого тела определяется шестью параметрами, упомянутыми выше, то число степеней свободы такой системы равно 3·N-6. Это число соответствует возможным смещениям точек относительно друг друга около своих положений равновесия. Такой тип движения называется колебательным. Значит, количество колебательных степеней свободы и есть 3·N-6.
Энергия молекул, состоящих из некоторого числа атомов, не жестко связанных друг с другом, будет теперь складываться из энергии поступательного движения, вращательной энергии и энергии колебаний
Ei = Eпоступ + Eвращ +Eколеб. (2.26)
Нет причин полагать, что поступательное движение является в какой-то мере выделенным по сравнению с вращательным или колебательным. Поэтому следует считать, что по-прежнему на каждую степень свободы молекулы приходится энергия, равная kT/2. Однако следует учесть особенность, связанную с колебательным движением. Средняя энергия колебательного движения складывается из средней кинетической энергии и равной ей средней потенциальной энергии. Поэтому на каждую колебательную степень свободы приходится энергия, в два раза большая, чем на поступательные или вращательные степени свободы. Следовательно, средняя энергия молекулы должна равняться:
<Ei> = i·k·T, (2.27)
где i — сумма числа поступательных, вращательных и удвоенного числа колебательных степеней свободы молекулы:
i = iпоступ + iвращат + 2·iколеб. (2.28)
Внутренняя энергия на один моль идеального газа
.
(2.29)