- •1. Развитие представлений о пространстве и времени в доньютоновский период
- •2. Пространство и время в классической механике Ньютона
- •3. Дальнедействие и близкодействие. Развитие понятия «поля»
- •Скорость
- •Ускорение
- •Равномерное движение
- •[Править]Равномерное движение по окружности
- •Равнопеременное движение
- •2.Криволинейное движение. Тангенциальное и нормальное ускорения
- •Импульс тела
- •4.Теорема об изменении кинетической энергии. Потенциальные силы, потенциальная энергия. Условия сохранения механической энергии. Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Потенциальные силы
- •Закон Сохранения Механической Энергии
- •5.Закон изменения импульса. Импульс силы. Центр масс. Скорость центра масс. Система центра масс. Условия сохранения импульса.
- •[Править]Закон сохранения
- •Определение
- •Центры масс однородных фигур
- •В механике
- •Центр масс в релятивистской механике
- •Центр тяжести
- •Система центра масс
- •6.Момент импульса материальной точки и твердого тела. Момент силы. Момент инерции. Закон изменения момента импульса. Условия сохранения момента импульса.
- •Теорема Гюйгенса-Штейнера
- •Осевые моменты инерции некоторых тел
- •7.Закон всемирного тяготения и законы Кеплера. Первая и вторая космические скорости.
- •Вычисление
- •Вычисление
- •8.Гидродинамика идеальной жидкости. Уравнения Эйлера. Уравнение непрерывности. Уравнение Бернулли.
- •Утверждение
- •Уравнение непрерывности
- •Уравнение Бернулли
- •9.Гидродинамика вязкой жидкости. Течение Пуазейля. Движение тел в вязкой жидкости. Формула Стокса. Гидродинамика вязкой жидкости Введение
- •1. Коэффициент вязкости. Течение по трубе
- •2. Формула Пуазейля.
- •3. Формула Стокса.
- •Постановка задачи
- •[Править]Закон Пуазёйля (Хагена — Пуазёйля)
- •[Править]Свойства
- •[Править]Применимость на практике
- •10.Теория относительности. Мировые линии. Интервал. Преобразования Лоренца. Сокращение длины. Замедление времени. Энергия и импульс.
- •Определение
- •Преобразования Лоренца в физике
- •[Править]Вид преобразований при коллинеарных (параллельных) пространственных осях
- •Вывод преобразований
- •Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- •Преобразования Лоренца в матричном виде
- •Свойства преобразований Лоренца
- •11.Тепловое равновесие. Температура и количество теплоты. Различные шкалы температур. Теплоемкость тела. Молярная и удельная теплоемкости. Уравнение теплового баланса.
- •Удельная теплоёмкость
- •Уравнение Теплового Баланса
- •12.Внутренняя энергия. Работа газа. Первое начало термодинамики. Опыты Румфорда, Дэви, Джоуля. Механический эквивалент теплоты. Внутренняя энергия идеального газа.
- •[Править]Идеальные газы
- •Формулировка
- •Опыты Румфорда, Дэви, Джоуля Научная деятельность
- •Механический эквивалент теплоты
- •Внутренняя энергия идеального газа
- •13.Тепловые машины (тепловые двигатели). Определение их коэффициента полезного действия. Цикл Карно. Вывод формулы к.П.Д. Цикла Карно. Холодильные машины. Холодильный коэффициент.
- •14.Обратимые и необратимые процессы. Примеры. Второе начало термодинамики. Определение энтропии как функции состояния. Формула энтропии идеального газа.
- •Обратимые и необратимые процессы. Круговой процесс
- •Второе начало термодинамики
- •Энтропия
- •Классический идеальный газ
- •Связь с другими законами состояния идеального газа
- •Теплоемкости при постоянном давлении и постоянном объеме
- •Адиабатический процесс
- •16.Применение законов Ньютона и теории вероятностей к вычислению давления идеального газа. Изотропия скоростей молекул. Средняя квадратичная скорость и абсолютная температура. Законы идеального газа
- •Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа
- •Абсолютная температура. Шкала температур Кельвина
- •17.Распределение Максвелла молекул по скоростям. Наиболее вероятная, средняя и средняя квадратичная скорости. Опытное подтверждение формулы Максвелла. Распределение Максвелла
- •18.Фазовое пространство. Потенциальная и кинетическая энергия молекул. Распределение Больцмана. Барометрическая формула. Опытное определение постоянной Больцмана.
- •Механические системы
- •Динамические системы
- •Случай нескольких систем
- •Примеры
- •Больцмана распределение
- •Барометрическая формула
- •Постоянная Больцмана
- •Связь между температурой и энергией
- •Определение энтропии
- •19.Взаимодействие молекул в газе. Эффективный диаметр молекул. Вычисление среднего числа соударений и длины свободного пробега. Силы взаимодействия молекул
- •Среднее число столкновений и средняя длина свободного пробега молекул
- •20.Явления переноса: диффузия, теплопроводность, вязкость. Зависимость их коэффициентов от длины свободного пробега. Явления переноса.
- •Диффузия
- •Теплопроводность
- •Внутреннее трение
- •21.Термодинамическая вероятность (статистический вес). Формула Больцмана для энтропии. Термодинамическое равновесие с точки зрения теории вероятностей. Флуктуации. Средняя квадратичная флуктуация.
- •Энтропия Больцмана
- •22.Поверхностное натяжение. Коэффициент поверхностного натяжения. Формула Лапласа. Капиллярные явления. Испарение и конденсация. Насыщенный пар. Влажность. Поверхностное натяжение
- •Коэффициент поверхностного натяжения.
- •Капиллярные явления
- •23.Реальные газы. Уравнение Ван-дер-Ваальса. Фазовые переходы. Критическая температура и давление.
- •Физика реального газа
- •Фазовый переход
- •24.Электрический заряд в природе. Закон сохранения электрического заряда в интегральной и дифференциальной форме.
- •Закон сохранения заряда в интегральной форме
- •Закон сохранения заряда в дифференциальной форме
- •25.Закон Кулона. Напряженность электрического поля e. Силовые линии. Теорема Гаусса и решение задач с ее помощью.
- •Коэффициент k
- •Напряженность электрического поля
- •Силовые линии электрического поля
- •Применение теоремы Гаусса
- •Расчет напряженности поля сферически симметричного распределения заряда
- •Расчёт напряжённости поля бесконечной плоскости
- •Расчёт напряжённости поля бесконечной нити
- •Другие задачи
- •Следствия из теоремы Гаусса
- •26.Потенциал и потенциальная энергия в электростатике. Энергия системы точечных зарядов, энергия уединенного проводника. Потенциальная энергия электростатического поля
- •Потенциал электростатического поля
- •27.Проводники в электростатике. Емкость проводника. Емкость плоского конденсатора.
- •28.Параллельное и последовательное соединения конденсаторов. Энергия заряженного конденсатора. Плотность энергии электрического поля.
- •Энергия заряженного конденсатора
- •Плотность энергии электрического поля
- •29.Поле электрического диполя. Диэлектрики в электрическом поле. Поляризуемость и диэлектрическая проницаемость. Поле электрического смещения d.
- •Поле диполя
- •Диполь в электрическом поле
- •Диэлектрики в электрическом поле
- •Источники магнитного поля
- •Напряжённость магнитного поля
- •31.Плотность тока и сила тока. Магнитное поле постоянного тока. Закон Био-Савара-Лапласа. Теорема о циркуляции магнитного поля.
- •§12. Постоянное магнитное поле
- •12.13 Применение теоремы о циркуляции к расчету магнитного поля.
- •12.13.1 Поле цилиндрического проводника с током.
- •12.13.2 Поле пластины с током.
- •12.13.3 Поле соленоида.
- •Практическое значение
- •32.Сила Лоренца и сила Ампера. Движение электрического заряда в постоянном электрическом и в постоянном магнитном поле. Лоренца сила
- •33.Постоянный ток в металлах. Вывод закона Ома из классической и статистической механики. Средняя скорость дрейфа электронов.
- •Вывод закона Ома в дифференциальной форме в классической электронной теории
- •35.Законы Кирхгофа для сложных цепей. Разность потенциалов между концами участка цепи, содержащего э.Д.С.
- •Разность потенциалов
- •Связь напряженности с разностью потенциалов в однородном электрическом поле
- •Связь напряженности с потенциалом в поле точечного заряда-источника
- •36.Постоянный ток в электролитах. Законы Фарадея. Число Фарадея.
- •Формулировка законов
- •Математический вид
- •37.Закон электромагнитной индукции в интегральной и дифференциальной форме. Э.Д.С. Самоиндукции. Правило Ленца. Уравнения Максвелла в интегральной форме
- •6.2. Уравнения Максвелла в дифференциальной форме
- •Самоиндукция. Энергия магнитного поля
- •[Править]Физическая суть правила
- •38.Коэффициенты взаимной индукции и индуктивность. Индуктивность соленоида (катушки) цилиндрической формы.
- •Индуктивность соленоида
- •39.Энергия магнитного поля соленоида (катушки). Плотность энергии магнитного поля.
- •40.Система уравнений Максвелла как совокупность законов электромагнетизма. Дивергенция и ротор как векторные дифференциальные операторы.
Вывод преобразований
Преобразования Лоренца могут быть получены абстрактно, из групповых соображений (в этом случае они получаются с неопределённым ), как обобщение преобразований Галилея (что было проделано Анри Пуанкаре — см. ниже). Однако впервые они были получены как преобразования, относительно которых ковариантны уравнения Максвелла(то есть по сути — которые не меняют вида законов электродинамики и оптики при переходе к другой системе отсчёта). Могут также быть получены из предположения линейности преобразований и постулата одинаковости скорости света во всех системах отсчёта (являющегося упрощённой формулировкой требования ковариантности электродинамики относительно искомых преобразований, и распространением принципа равноправия инерциальных систем отсчёта — принципа относительности — наэлектродинамику), как это делается в специальной теории относительности (СТО) (при этом в преобразованиях Лоренца получается определённым и совпадает соскоростью света).
Надо заметить, что если не ограничивать класс преобразований координат линейными, то первый закон Ньютона выполняется не только для преобразований Лоренца, а для более широкого класса дробно-линейных преобразований[3] (однако этот более широкий класс преобразований — за исключением, конечно, частного случая преобразований Лоренца — не сохраняет метрику постоянной).
Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
В силу произвольности введения осей координат, многие задачи можно свести к указанному случаю. Если же задача требует иного расположения осей, то можно воспользоваться формулами преобразований в более общем случае. Для этого радиус-вектор точки
где
— орты,
надо разбить на составляющую
параллельную
скорости и составляющую
ей
перпендикулярную
Тогда преобразования получат вид
где
— абсолютная
величина скорости,
—
абсолютная величина продольной
составляющей радиус-вектора.
Эти формулы для случая параллельных осей, но с произвольно направленной скоростью, можно преобразовать к виду, впервые полученному Герглоцем:
.
Обратите внимание, что самый общий случай, когда начала координат не совпадают в нулевой момент времени, здесь не приведён с целью экономии места. Его можно получить, добавив к преобразованиям Лоренца трансляцию (смещение начала координат).
Преобразования Лоренца в матричном виде
Для случая коллинеарных осей преобразования Лоренца записываются в виде
где Лоренц-фактор
При произвольной ориентации осей, в форме 4-векторов это преобразование записывается как:
где
—
единичная матрица
— тензорное
умножение трёхмерных
векторов.
Как
уже отмечено выше, надо иметь в виду,
что в литературе матрица преобразований
Лоренца часто записывается для упрощения
в системе единиц, где
Произвольное однородное преобразование Лоренца можно представить как некоторую композицию вращений пространства и элементарных преобразований Лоренца, затрагивающих только время и одну из координат. Это следует из алгебраической теоремы о разложении произвольного вращения на простые.
Свойства преобразований Лоренца
Можно
заметить, что в случае, когда
преобразования
Лоренца переходят в преобразования
Галилея.
То же самое происходит в случае,
когда
Это
говорит о том, что специальная теория
относительности совпадает с механикой
Ньютона либо
в мире с бесконечной скоростью света,
либо при скоростях, малых по сравнению
со скоростью света. Последнее объясняет,
каким образом сочетаются эти две теории —
первая является обобщением и уточнением
второй, а вторая — предельным случаем
первой, оставаясь в этом качестве верной
приближенно (с некоторой точностью, на
практике часто очень и очень высокой)
при достаточно малых (по сравнению со
скоростью света) скоростях движений.
Преобразования Лоренца сохраняют инвариантным интервал для любой пары событий (точек пространства-времени) — то есть любой пары точек пространства-времени Минковского:
Убедиться в этом нетрудно, например, проверив явно то, что матрица преобразования Лоренца ортогональна в смысле метрики Минковского:
определяемой
таким выражением, то есть
Это
проще всего проделать для буста, а для
трёхмерных вращений это очевидно из
определения декартовых координат, кроме
того, сдвиги начала отсчёта не меняют
разностей координат. Следовательно,
это свойство верно и для любых композиций
бустов, вращений и сдвигов, что и
составляет полную группу Пуанкаре; как
только мы узнали, что преобразования
координат ортогональны,
из этого сразу следует, что формула для
расстояния остаётся неизменной при
переходе к новой системе координат —
по определению ортогональных
преобразований.
В
частности, инвариантность интервала
имеет место и для случая
а
значит, гиперповерхность в
пространстве-времени, которая определяется
равенством нулю интервала до заданной
точки — световой
конус —
является неподвижной при преобразованиях
Лоренца (что является проявлением
инвариантности скорости света).
Внутренность двух полостей конуса
соответствует времениподобным — вещественным —
интервалам от их точек до вершины,
внешняя область —пространственноподобным — чисто
мнимым (в
принятой в этой статье сигнатуре
интервала).
Другие инвариантные гиперповерхности однородных преобразований Лоренца (аналоги сферы для пространства Минковского) — гиперболоиды: двуполостный гиперболоид для времениподобных интервалов относительно начала координат, и однополостный — для пространственноподобных интервалов.
Матрицу
преобразования Лоренца при коллинеарных
пространственных осях (в системе
единиц
)
можно представить как:
где
.
В этом легко убедиться, учитывая
и
проверив выполнение соответствующего
тождества для матрицы преобразования
Лоренца в обычном виде.
Если
принять введённые Минковским обозначения
,
то преобразование Лоренца для такого
пространства сводится
к повороту на мнимый угол в
плоскости, включающей ось
(для
случая движения вдоль оси
—
в плоскости
).
Это очевидно, исходя из подстановки
в
матрицу, приведенную чуть выше — и
её небольшого изменения для того, чтобы
учесть вводимую мнимость временной
координаты — и сравнении её с обычной
матрицей вращения.
Лоренцевское сокращение l = l0(1 – β2)1/2
Длина стержня – разность координат его концов в одно и то же время (Δt = 0) – зависит от системы отсчёта.
l0 – длина покоящегося стержня (собственная длина)
Продольные размеры движущегося со скоростью β стержня сокращаются: l = l0(1 – β2)1/2
Импульс и энергия в СТО
Импульс релятивистской частицы p = m0v/(1 – v2/c2)1/2
Релятивистская энергия: Е = mc2/(1 – v2/c2)1/2
Энергия покоя: Е0 = mc2
Кинетическая энергия: K = E – E0;
Скорость частицы: v = c2 p/E
E2 = E02 + p2c2 pc = (K(K + 2E0))1/2
Для безмассовых частиц: E = pc; v = c
закон дисперсии релятивистской частицы E = E(p): E = (E02 + p2c2)1/2
Замедление времени
Рассмотрим часы, покоящиеся в начале координат движущейся системы (x = 0), которые перемещаются относительно лабораторной системы координат со скоростью V, так что их координата x = V t пропорциональна времени, определяемому неподвижными часами. Инвариантность интервала позволяет, тогда, определить показания движущихся часов:
|
(17) |
Время, измеряемое часами, движущимися относительно лабораторной системы отсчета, замедляется.
Как ни покажется странным, но тот же вывод справедлив относительно замедления темпа хода часов в лабораторной системе координат с точки зрения наблюдателя из движущейся системы отсчета, т.е. "движущиеся" и "покоящиеся" часы взаимно отстают друг от друга.
С последним замечанием тесно связан широко известный парадокс близнецов (см. ниже раздел "Задачи").
Замедление хода времени в движущейся системе отсчета было экспериментально подтверждено американскими физиками Б. Росси и Д.Х. Холлом в 1941 году. Они наблюдали увеличение среднего времени жизни мюонов, двигавшихся со скоростью v c, в 6 8 раз по сравнению с временем жизни неподвижных мюонов.
Особая ценность этого эксперимента состоит в том, что процесс распада мюонов определяется слабым взаимодействием, в то время как СТО была построена для описания систем с электромагнитным взаимодействием.
Лоренцево сокращение длины
Стержень, расположенный вдоль оси 0X движущейся системы отсчета и покоящийся в ней, имеет длину l0. Если один из концов стержня (для простоты) сосвпадает с началом координат этой системы, то в момент t = 0 по часам лабораторной системы отсчета координаты концов стержня определяются преобразованием Лоренца:
|
(18) |
Длина движущегося стержня в лабораторной системе отсчета уменьшается в направлении движения. Это изменение длины называется сокращением Лоренца - Фитцджеральда.
Поскольку поперечные размеры тела не изменяются, то легко видеть, что объем тела также уменьшается:
|
(19) |
