
- •Глава 6 посвящена понятию производных классов, которое позволяет строить
- •Раздел 3.4 главы 2. Для обозначения справочного руководства применяется
- •1991 Г.Г. (такие как множественное наследование, статические функции-члены
- •1.1 Введение
- •1.2 Парадигмы программирования
- •1.2.1 Процедурное программирование
- •1.2.5 Объектно-ориентированное программирование
- •1.5 Поддержка объектно-ориентированного программирования
- •1.5.1 Механизм вызова
- •1.5.2 Проверка типа
- •1.5.3 Множественное наследование
- •1.6 Пределы совершенства
- •2.2 Имена
- •2.3.2 Неявное преобразование типа
- •2.4 Литералы
- •2.4.4 Строки
- •2.6. Экономия памяти
- •2.6.1 Поля
- •3.1.1 Анализатор
- •3.1.2 Функция ввода
- •3.2 Сводка операций
- •3.2.3 Инкремент и декремент
- •3.2.5 Преобразование типа
- •3.2.6 Свободная память
- •3.3.2 Оператор goto
- •4.1 Введение
- •4.3.1 Единственный заголовочный файл
- •4.3.2 Множественные заголовочные файлы
- •4.4 Связывание с программами на других языках
- •4.6.3 Передача параметров
- •5.1 Введение и краткий обзор
- •5.3.1 Альтернативные реализации
- •5.3.2 Законченный пример класса
- •Vector и matrix, мы могли бы обойтись без контроля индекса при
- •5.4.5 Указатели на члены
- •5.4.6 Структуры и объединения
- •5.5.3 Свободная память
- •5.5.5 Массивы объектов класса
- •6.1 Введение и краткий обзор
- •6.2.3 Иерархия классов
- •6.2.4 Поля типа
- •6.2.5 Виртуальные функции
- •6.4.1 Монитор экрана
- •6.5 Множественное наследование
- •7.1 Введение
- •7.3 Пользовательские операции преобразования типа
- •7.3.2 Операции преобразования
- •7.3.3 Неоднозначности
- •7.5 Большие объекты
- •Void f2(t a) // вариант с контролем
- •Void f3(t a) // вариант с контролем
- •Inv() обращает саму матрицу m, а не возвращает новую, обратную m,
- •7.13 Предостережения
- •8.1 Введение
- •8.4.4 Неявная передача операций
- •8.4.5 Введение операций с помощью параметров шаблонного класса
- •8.7.1 Задание реализации с помощью параметров шаблона
- •9.1 Обработка ошибок
- •9.1.2 Другие точки зрения на особые ситуации
- •9.3.2 Производные особые ситуации
- •9.4.2 Предостережения
- •9.4.3 Исчерпание ресурса
- •9.4.4 Особые ситуации и конструкторы
- •9.5 Особые ситуации могут не быть ошибками
- •10.1 Введение
- •10.2 Вывод
- •10.2.1 Вывод встроенных типов
- •10.4.1.2 Поля вывода
- •10.4.1.4 Вывод целых
- •Istream - шаблон типа smanip, а smanip - двойник для ioss.
- •10.5.1 Закрытие потоков
- •10.5.2 Строковые потоки
- •X Целый параметр выдается в шестнадцатеричной записи;
- •11.1 Введение
- •11.2 Цели и средства
- •11.3 Процесс развития
- •11.3.1 Цикл развития
- •11.3.2 Цели проектирования
- •11.3.3 Шаги проектирования
- •11.3.3.1 Шаг 1: определение классов
- •11.3.3.2 Шаг 2: определение набора операций
- •11.3.3.3 Шаг 3: указание зависимостей
- •11.3.3.4 Шаг 4: определение интерфейсов
- •11.3.3.5 Перестройка иерархии классов
- •11.3.3.6 Использование моделей
- •11.3.4 Эксперимент и анализ
- •11.3.5 Тестирование
- •11.3.6 Сопровождение
- •11.3.7 Эффективность
- •11.4 Управление проектом
- •11.4.1 Повторное использование
- •11.4.2 Размер
- •11.4.3 Человеческий фактор
- •11.5 Свод правил
- •11.6 Список литературы с комментариями
- •12.1 Проектирование и язык программирования.
- •12.1.1 Игнорирование классов
- •12.1.2 Игнорирование наследования
- •12.1.3 Игнорирование статического контроля типов
- •12.1.4 Гибридный проект
- •12.2 Классы
- •12.2.1 Что представляют классы?
- •12.2.2 Иерархии классов
- •12.2.3 Зависимости в рамках иерархии классов.
- •Vertical_scrollbar или с помощью одного типа scrollbar, который
- •12.2.6 Отношения использования
- •12.2.7 Отношения внутри класса
- •12.3 Компоненты
- •12.4 Интерфейсы и реализации
- •12.5 Свод правил
- •13.1 Введение
- •13.2 Конкретные типы
- •13.4 Узловые классы
- •1, 2, 6 И 7. Класс, который не удовлетворяет условию 6, походит
- •13.5.1 Информация о типе
- •13.6 Обширный интерфейс
- •13.7 Каркас области приложения
- •13.8 Интерфейсные классы
- •13.10 Управление памятью
2.6. Экономия памяти
В процессе создания нетривиальной программы рано или поздно наступает
момент, когда требуется больше памяти, чем можно выделить или
запросить. Есть два способа выжать еще некоторое количество памяти:
[1] паковать в байты переменные с малыми значениями;
[2] использовать одну и ту же память для хранения разных объектов
в разное время.
Первый способ реализуется с помощью полей, а второй - с помощью
объединений. И те, и другие описываются ниже. Поскольку назначение
этих конструкций связано в основном с оптимизацией программы, и
поскольку, как правило, они непереносимы, программисту следует
хорошенько подумать, прежде чем использовать их. Часто лучше изменить
алгоритм работы с данными, например, больше использовать динамически
выделяемую память, чем заранее отведенную статическую память.
2.6.1 Поля
Кажется расточительным использовать для признака, принимающего
только два значения ( например: да, нет) тип char, но объект типа
char является в С++ наименьшим объектом, который может независимо
размещаться в памяти. Однако, есть возможность собрать переменные
с малым диапазоном значений воедино, определив их как поля структуры.
Член структуры является полем, если в его определении после имени
указано число разрядов, которое он должен занимать. Допустимы
безымянные поля. Они не влияют на работу с поименованными полями,
но могут улучшить размещение полей в памяти для конкретной машины:
struct sreg {
unsigned enable : 1;
unsigned page : 3;
unsigned : 1; // не используется
unsigned mode : 2;
unsigned : 4; // не используется
unsigned access : 1;
unsigned length : 1;
unsigned non_resident : 1;
};
Приведенная структура описывает разряды нулевого
регистра состояния DEC PDP11/45 (предполагается, что поля в слове
размещаются слева направо). Этот пример показывает также другое
возможное применение полей: давать имена тем частям
объекта, размещение которых определено извне. Поле должно иметь
целый тип ($$R.3.6.1 и $$R.9.6), и оно используется аналогично другим
объектам целого типа. Но есть исключение: нельзя брать адрес поля.
В ядре операционной системы или в отладчике тип sreg мог бы
использоваться следующим образом:
sreg* sr0 = (sreg*)0777572;
//...
if (sr0->access) { // нарушение прав доступа
// разобраться в ситуации
sr0->access = 0;
}
Тем не менее,
применяя поля для упаковки нескольких переменных в один байт, мы
необязательно сэкономим память. Экономится память для данных, но
на большинстве машин одновременно возрастает объем команд,
нужных для работы с упакованными данными.
Известны даже такие программы, которые значительно сокращались в объеме,
если двоичные переменные, задаваемые полями, преобразовывались в
переменные типа char! Кроме того, доступ к char или int обычно
происходит намного быстрее, чем доступ к полю. Поля - это просто
удобная краткая форма задания логических операций для извлечения
или занесения информации в части слова.
2.6.2. Объединения
Рассмотрим таблицу имен, в которой каждый элемент содержит имя и
его значение. Значение может задаваться либо строкой, либо целым числом:
struct entry {
char* name;
char type;
char* string_value; // используется если type == 's'
int int_value; // используется если type == 'i'
};
void print_entry(entry* p)
{
switch(p->type) {
case 's':
cout << p->string_value;
break;
case 'i':
cout << p->int_value;
break;
default:
cerr << "type corrupted\n";
break;
}
}
Поскольку переменные
string_value и int_value никогда не могут использоваться одновременно,
очевидно, что часть памяти пропадает впустую. Это можно легко исправить,
описав обе переменные как члены объединения, например, так:
struct entry {
char* name;
char type;
union {
char* string_value; // используется если type == 's'
int int_value; // используется если type == 'i'
};
};
Теперь гарантируется, что при выделении памяти для entry члены
string_value и int_value будут размещаться с одного адреса, и
при этом не нужно менять все части программы, работающие с entry.
Из этого следует, что все члены объединения вместе занимают такой же
объем памяти, какой занимает наибольший член объединения.
Надежный способ работы с объединением заключается в том, чтобы
выбирать значение с помощью того же самого члена, который его записывал.
Однако, в больших программах трудно гарантировать, что объединение
используется только таким способом, а в результате использования
не того члена обЪединения могут возникать трудно обнаруживаемые ошибки.
Но можно встроить объединение в такую структуру, которая обеспечит
правильную связь между значением поля типа и текущим типом члена
объединения ($$5.4.6).
Иногда объединения используют для "псевдопреобразований" типа
(в основном на это идут программисты, привыкшие к языкам, в которых
нет средств преобразования типов, и в результате приходится обманывать
транслятор). Приведем пример такого "преобразования" int в int*
на машине VAX, которое достигается простым совпадением разрядов:
struct fudge {
union {
int i;
int* p;
};
};
fudge a;
a.i = 4095;
int* p = a.p; // некорректное использование
В действительности это вовсе не преобразование типа, т.к. на одних
машинах int и int* занимают разный объем памяти, а на других целое
не может размещаться по адресу, задаваемому нечетным числом. Такое
использование объединений не является переносимым, тогда как
существует переносимый способ задания явного преобразования
типа ($$3.2.5).
Иногда объединения используют специально, чтобы избежать
преобразования типов. Например, можно использовать fudge, чтобы
узнать, как представляется указатель 0:
fudge.p = 0;
int i = fudge.i; // i необязательно должно быть 0
Объединению можно дать имя, то есть можно сделать его
полноправным типом. Например, fudge можно описать так:
union fudge {
int i;
int* p;
};
и использовать (некорректно) точно так же, как и раньше. Вместе с тем,
поименованные объединения можно использовать и вполне корректным
и оправданным способом (см. $$5.4.6).
2.7 Упражнения
1. (*1) Запустить программу "Hello, world" (см. $$1.3.1).
2. (*1) Для каждого описания из $$2.1 сделать следующее: если описание
не является определением, то написать соответствующее определение;
если же описание является определением, написать для него описание,
которое не являлось бы одновременно и определением.
3. (*1) Напишите описания следующих объектов: указателя на символ;
массива из 10 целых; ссылки на массив из 10 целых; указателя
на массив символьных строк; указателя на указатель на символ;
целого-константы; указателя на целое-константу; константного
указателя на целое. Описания снабдить инициализацией.
4. (*1.5) Напишите программу, которая печатает размеры основных типов
и типа указателя. Используйте операцию sizeof.
5. (*1.5) Напишите программу, которая печатает буквы от 'a' до 'z' и цифры
от '0' до '9' и их целые значения. Проделайте то же самое для других
видимых символов. Проделайте это, используя шестнадцатеричную
запись.
6. (*1) Напечатайте последовательность разрядов представления указателя
0 на вашей машине. Подсказка: см.$$2.6.2.
7. (*1.5) Напишите функцию, печатающую порядок и мантиссу параметра типа
double.
8. (*2) Каковы на используемой вами машине наибольшие и наименьшие
значения следующих типов: char, short,int,long, float, double,
long double, unsigned, char*, int* и void*? Есть ли какие-то
особые ограничения на эти значения? Например, может ли int* быть
нечетным целым? Как выравниваются в памяти объекты этих типов?
Например, может ли целое иметь нечетный адрес?
9. (*1) Какова максимальная длина локального имени, которое
можно использовать в вашей реализации С++ ? Какова максимальная
длина внешнего имени? Есть ли какие-нибудь ограничения на символы,
которые можно использовать в имени?
10. (*1) Напишите функцию, которая меняет местами значения двух целых.
В качестве типа параметров используйте int*. Напишите другую функцию
с тем же назначением, используя в качестве типа параметров int&.
11. (*1) Каков размер массива str в следующем примере:
char str[] = "a short string";
Какова длина строки "a short string"?
12. (*1.5) Составьте таблицу из названий месяцев года и числа дней
в каждом из них. Напишите программу, печатающую ее. Проделайте
это дважды: один раз - используя массивы для названий месяцев
и количества дней, а другой раз - используя массив структур,
каждая из которых содержит название месяца и количество дней в нем.
13. (*1) С помощью typedef определите типы: unsigned char, константный
unsigned char, указатель на целое, указатель на указатель на
символ, указатель на массив символов, массив из 7 указателей
на целое, указатель на массив из 7 указателей на целое и массив из
8 массивов из 7 указателей на целое.
14. (*1) Определить функции f(char), g(char&) и h(const char&) и
вызвать их, используя в качестве параметров 'a', 49, 3300, c, uc, и
sc, где c - char, uc - unsigned char и sc - signed char. Какой
вызов является законным? При каком вызове транслятору придется
завести временную переменную?
* ГЛАВА 3. ВЫРАЖЕНИЯ И ОПЕРАТОРЫ
"Но с другой стороны не следует
забывать про эффективность"
(Джон Бентли)
С++ имеет сравнительно небольшой набор операторов, который позволяет
создавать гибкие структуры управления, и богатый набор операций для
работы с данными. Основные их возможности показаны в этой главе на одном
завершенном примере. Затем приводится сводка выражений, и подробно
обсуждаются операции преобразования типа и размещение в свободной памяти.
Далее дана сводка операторов, а в конце главы обсуждается выделение
текста пробелами и использование комментариев.
3.1 Калькулятор
Мы познакомимся с выражениями и операторами на примере программы
калькулятора. Калькулятор реализует четыре основных арифметических
действия в виде инфиксных операций над числами с плавающей точкой.
В качестве упражнения предлагается добавить к калькулятору
переменные. Допустим, входной поток имеет вид:
r=2.5
area=pi*r*r
(здесь pi имеет предопределенное значение). Тогда программа калькулятора
выдаст:
2.5
19.635
Результат вычислений для первой входной строки равен 2.5, а результат
для второй строки - это 19.635.
Программа калькулятора состоит из четырех основных частей:
анализатора, функции ввода, таблицы имен и драйвера. По сути - это
транслятор в миниатюре, в котором анализатор проводит синтаксический
анализ, функция ввода обрабатывает входные данные и проводит
лексический анализ, таблица имен хранит постоянную информацию, нужную
для работы, а драйвер выполняет инициализацию,
вывод результатов и обработку ошибок. К такому калькулятору можно
добавить много других полезных возможностей, но программа его и так
достаточно велика (200 строк), а введение новых возможностей
только увеличит ее объем, не давая дополнительной
информации для изучения С++.