Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
САМОСТОЯТЕЛЬНАЯ ПО МАТЕМАТИКЕ.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
89.53 Кб
Скачать

Свойства коэффициента корреляции:

R=0 для независимых случайных величин

  1. 0<|R|<0,3 слабая зависимость

  2. 0,3≤|R|<0,6 средняя зависимость

  3. 0,6≤|R|<0,9 сильная зависимость

  4. 0,9≤|R|<1 очень сильная зависимость

  5. R= ±1 функциональная зависимость

Проверка гипотезы о значимости выборочного коэффициента линейной корреляции

Рассмотрим гипотезу значимости выборочного коэффициента линейной корреляции.

Виды взаимосвязи

1. Прямая положительная и отрицательная взаимосвязь. Два явления непосредственно совпадают, поэтому взаимосвязаны. Интеллект и успеваемость в школе, общительность и застенчивость — яркие примеры прямой взаимосвязи.

2. Косвеная взаимосвязь. Два явления сильно коррелируют с третьим, поэтому между собой так же имеют корреляцию. К примеру, стиль общения ребенка взаимосвязан со стилем воспитания в семье за счет третьей переменной — установок личности. Очевидно, что воспитание в семье формирует установки ребенка, в свою очередь установки влияют на поведение.

3. Нулевая корреляция. Предполагает отсутствие закономерной взаимосвязи между переменными.

4. Случайная взаимосвязь. Корреляция может быть случайной! Очень многие процессы происходят одновременно и совпадают. Здесь уместно сказать, что если много-много коррелировать — что-нибудь обязательно скоррелируется.

Важно. Взаимосвязь должна интерпретироваться в оба направления. Формально, корреляция не обозначает причинно-следственной связи! Это ВЗАИМОсвязь, ВЗАИМОсовпадение явлений. Возвращаясь к примеру: застенчивость взаимосвязана с депрессивностью. Логично подумать, что депрессивный человек более застенчив, чем не депрессивный, но почему не наоборот? С чего начинать рассуждение? Мы интерпретируем корреляцию в оба направления и не констатируем причинно-следственную связь. Пишем «кореляция», «взаимосвязь», подразумеваем – совпадение. Причем сильная корреляция обозначает неслучайное совпадение.

Есть случаи, когда корреляция может говорить о причинно следственной связи. Это случаи, когда одна из переменных общеактивна, а вторая субъективна. К объективным переменным относятся возраст, стаж, рост, которые просто не могут зависеть от субъективных переменных: настроения, особенностей личности, мотивации и т.д. Однако, такие объективные переменные, как вес, количество детей в семье, частота смены места работы, количество контактов и т.п. могут и часто зависят от субъективных психологических показателей.

К примеру, профессионализм рабочего повышается со стажем. Стаж и профессионализм коррелируют и мы можем быть уверены, что для повышения профессионализма стаж является объективной причиной. Объективные переменные, основанные на времени всегда являются причиной при наличии корреляции с субъективными характеристиками. В остальных случаях нужно очень осторожно относиться к причинно-следственным интерпретациям коэффициента корреляции.

Если причинно-следственная связь обоснована в теоретической части работы и подтверждается многими авторами, то корреляцию так же можно интерпретировать как причинно-следственную связь.

Существуют различные формулы расчета коэффициента корреляции для различных типов шкал. Результатом расчета по любой формуле будет число от -1 до +1.

В следующей таблице написаны названия коэффициентов корреляции для различных типов шкал.

Дихотомическая шкала (1/0)

Ранговая (порядковая) шкала

Интервальная и абсолютная шкала

Дихотомическая шкала (1/0)

Коэфициент ассоциации Пирсона, коэффициент четырехклеточной сопряженности Пирсона.

Рангово-бисериальная корреляция.

Бисериальная корреляция

Ранговая (порядковая) шкала

Рангово-бисериальная корреляция.

Ранговый коэффициент корреляции Спирмена или Кендалла.

Значения интервальной шкалы переводятся в ранги и используется ранговый коэффициент

Интервальная и абсолютная шкала

Бисериальная корреляция

Значения интервальной шкалы переводятся в ранги и используется ранговый коэффициент

Коэффициент корреляции Пирсона

(коэффициент линейной корреляции)

Основные принципы интерпретации различных коэффициентов корреляции одинаковы. В случае дихотомической шкалы мы говорим о вероятности совпадения (прямого или обратного) ответов типа да/нет, в случае рангов о вероятности совпадения порядка, в случае коэффициента линейной корреляции мы говорим о степени совместного изменения переменных или о их взаимосвязи.

Полученный коэффициент нужно проверить на значимость, которая зависит от вероятности ошибки и количества человек. Коэффициент корреляции может быть формально небольшим, к примеру r=0,17, но если исследование проведено на 500 человек и вероятность ошибки (р) менее 0,05, то мы признаём значимым даже такой небольшой коэффициент. С другой стороны, при выборке в 5 человек очень большой коэффициент мы признаем незначимым, т.к. из-за малого количества человек мы можем совершить ошибочный вывод об этой корреляции.

Таким образом, для нас главное узнать какой должна быть вероятность ошибки и количество человек, чтобы признать полученный коэффициент действительно значимым.

Расчет значения р (вероятности ошибки) – сложная процедура, поэтому компьютерные программы, в которых можно считать коэффициент корреляции, расчитывают вероятность ошибки самостоятельно. Если же расчет производился вручную или по другим причинам конкретное значение р неизвестно, то используем уже рассчитанные таблицы критических значений.

Таблицы критических значений предназначены чтобы можно было найти критическое значение коэффициента корреляции, т.е. такое, после которого взаимосвязь можно считать значимой и неслучайной. При этом значение вероятности ошибки задаётся исследователем. В таблицах обычно есть критические значения коэффициентов корреляции для р≤0,001, р≤0,01, р≤0,05, иногда пишут соответственно 0,1%, 1%, 5%. Таким образом, пользуясь таблицами мы отвечаем на вопрос: какое критическое значение коэффициента корреляции при данном количестве людей и вероятности ошибки менее или равно 0,1% (1%, 5%)?

Обычно в психологических исследованиях вероятность ошибки выбирают на уровне p≤0,05, но если в исследовании принимают участие более 100 человек, то можно выбирать и р≤0,01. В первой колонке таблицы критических значений находится значение df (Degrees of Freedom — степени свободы), которое расчитывается очень просто: df = n-1, где n – количество человек. На пересечении нужного df и выбранной вероятности ошибок находим критический коэффициент корреляции. Если рассчитанное значение больше критического — коэффициент значимый, в обратном случае взаимосвязь является случайной.

В примерах, приведённых выше для количества человек n=89 и p≤0,05 критический коэффициент корреляции r=0,20. А вот если бы количество человек было 45 (при том же p≤0,05) то критическим значением было бы r=0,29, при количестве человек 10 критическое значение r=0,63.

Вывод

Коэффициент корреляции — это мера взаимосвязи измеренных явлений. На самом примитивном уровне его можно рассматривать как меру совпадения двух рядов чисел. Любой коэффициент корреляции изменяется в пределах от -1 до +1. Отрицательные значения говорят про обратнопропорциональную взаимосвязь, положительные о прямопропорциональной. Полученный коэффициент необходимо сравнивать с критическим табличным.