
- •Глава 1
- •1.1.3. Полимеризация в массе
- •1.1.4. Полимеризация в растворе
- •1.2. Суспензионная полимеризация
- •1.3. Эмульсионная полимеризация .
- •1.4. Полимеризация под действием радиации
- •1.5. Полимеризация в присутствии металлорганичесних соединений
- •1.8. Совместная полимеризация винилацетата
- •1.8.1. Сополимеризации
- •1.6.2. Синтез привитых и блоксополимеров
- •2.1. Производство растворов полимеров
- •2.2. Производство поливинилацетатных дисперсий
- •2.2.1. Гомополимерные грубодиспероные пвад
- •16 Органический ' слой, на сжигание
- •2.2.2. Гомополимерные тоннодиспероные пвад
- •2.2.3. Дисперсии сополимеров винилацетата
- •2.2.4. Выделение полимеров из дисперсий
- •2.2.5. Диоперсии, модифицированные термореантивными смолами
- •2.3. Производство поливинилацетата суспензионным методом
- •3.1. Структура поливинилацетата
- •3.2. Физико-механические и электричесние свойства поливинилацетата
- •3.3. Химические свойства поливинилацетата
- •7.3. Промышленное производство поливинилацеталей
- •7.4. Структура и физико-механические свойства поливинилацеталей
- •7.5. Химические свойства поливинилацеталей
- •7.6. Технические марки поливинилацеталей
- •8.1. Пленочные материалы
- •8.2. Волокна и другие изделия
- •8.3. Краски, лаки, покрытия
- •8.4. Клеи
- •8.5. Применение поливинйлацетатных
- •8.6. Защитные коллоиды и загустители
- •8.7. Применение поливинйлацетатных пластиков в медицине
- •8.8. Другие области применения
1.4. Полимеризация под действием радиации
Фотополимеризация ВА наиболее энергично протекает под воздействием УФ-лучей с длиной волны 2,5-Ю-7 м, соответствующей его максимальному поглощению. Первичный квантовый выход (число радикалов, образующихся при поглощении 1 кванта света) равен 0,3 [12]. Для увеличения эффективности инициирования применяют сенсибилизаторы, поглощающие свет в более широкой области. В качестве сенсибилизаторов используют азосоеди-нения, в том числе ДАК, бензоин, пероксиды, соли уранила, Fe2+ и др.
. Кинетические закономерности фотоинициированной полимеризации ВА те же, что и полимеризации в массе.и в растворе в присутствии радикалобразующих соединений. Скорость ее пропорциональна квадратному корню из произведения интенсивности света и концентрации сенсибилизатора.
В промышленных условиях этот метод полимеризации ВА практически не применяется и лишь в последние годы были предприняты попытки использования для этой цели лазерной техники.
Радиационная полимеризация виниловых мономеров может протекать под воздействием различных излучений с высокой энергией (рентгеновские и у-лучи, а-часгицы, потоки электронов, протонов). О радикальном характере радиационно-инициирован-ной полимеризации ВА можно судить по прямопропорциональ-нОй зависимости скорости процесса корню квадратному из интенсивности излучения и по ингибированию реакции такими типичными ингибиторами радикальной полимеризации, как кислород и хинон.
Метод радиационной полимеризации ВА в массе и растворе применяется лишь в тех исключительных случаях, когда неприменимы обычные способы, например, при изготовлении модифицированной древесины путем пропитки дерева мономером с последующей его полимеризацией. Более перспективно использование радиационного инициирования в процессе эмульсионной полимеризации ВА.
Радиационно-инициированная эмульсионная полимеризация (РЭП) имеет свои особенности [42], которые в большинстве случаев являются ее преимуществами: 1) в полимере отсутствуют остатки инициаторов, которые впоследствии могут ухудшать его Свойства при переработке и эксплуатации; 2) отсутствует передача цепи на инициатор; 3) скорость реакции инициирования постоянна во времени; 4) можно легко и быстро менять скорость инициирования и тем самым регулировать скорость полимеризации и молекулярную массу; 5) скорость радиационного инициирования не зависит от температуры, что позволяет проводить процесс при достаточно низких температурах, избегая нежелательных побочных реакций; 6) ионизирующее излучение оказывает специфическое влияние на коллоидные системы, повышая их устойчивость, что дает возможность осуществлять РЭП с приемлемыми скоростями в присутствии малых количеств эмульгатора (ниже ККМ).
Основная доля свободных радикалов при проведении РЭП возникает в водной фазе. Инициирование в большинстве случаев осуществляют у-излучением, позволяющим подвергать облучению большую толщину слоя и имеющим высокий -радиационно-химиче-ский выход радикалов из воды (5—5,5 радикалов на 100 эВ).
Указанные выше преимущества РЭП могут быть использованы для получения высокомолекулярного ПВА и ПВС на его основе [а. с. СССР 907009]. При инициировании эмульсионной полимеризации v-излучением от источника 60Со с мощностью дозы облучения 0,08 Вт/кг в присутствии эмульгатора Е-30 (смеси натриевых солей алкилсульфокислот с длиной цепи С12—Сш) в количестве 0,05% (масс.) (ниже ККМ) и при температуре 12—13 °С полимеризация ВА завершалась за 100—120 мин [6, с. 88]. ММ ПВА регулировалась временем облучения. ПВА может быть выделен из дисперсии в виде. порошкообразного продукта либо введением в ПВАД алифатического углеводорода и сильной кислоты с последующим прогревом смеси до 50—60°С, либо осаждением полимера раствором электролита в присутствии ПВС или карбоксиметилцеллюлозы [а. с. СССР 594124, 704945]. Омылением ПВА, синтезированного методом РЭП, нами был получен ПВС с Р = 3200 -т- 5000.