
- •Глава 1
- •§1.Свойства жидкостей
- •§ 2. Сведения из гидростатики и гидродинамики
- •§ 3. Практическое использование законов гидростатики и гидродинамики
- •§ 4. Истечение жидкости через отверстия и насадки
- •Глава II
- •§ 5. Параметры состояния газа
- •§ 6. Идеальный и реальный газы
- •§ 7. Теплоемкость газов *
- •§ 8. Первый закон термодинамики
- •§ 9. Термодинамические процессы
- •§ 10. Второй закон термодинамики
- •§ 11. Свойства водяного пара
- •§12. Свойства влажного воздуха
- •§13. Истечение и дросселирование
- •§ 14. Основы теплопередачи
- •Глава III
- •§ 15. Основные сборочные единицы трубопроводов
- •§ 17. Ремонт и испытание трубопроводов и арматуры
- •§ 18. Правила безопасной эксплуатации трубопроводов и арматуры
- •§ 19. Составление и чтение схем трубопроводов
- •Глава IV
- •§ 20. Общие сведения
- •§ 21. Возвратно-поступательные насосы
- •§ 22. Основные сборочные единицы насоса
- •§ 24. Процессы всасывания и нагнетания
- •§ 25. Газовые колпаки
- •§ 26. Индикаторная диаграмма поршневого насоса
- •§ 28. Дозировочные и синхродозировочные электронасосные агрегаты
- •§ 27. Паровые прямодействующие насосы
- •§ 30. Примеры составления и чтения схем насосных установок
- •Глава V
- •§ 31. Общие сведения
- •§ 32. Схема установки центробежных насосов
- •§ 33. Основные параметры центробежного насоса
- •§ 34. Уравнение Эйлера для определения теоретического и действительного напоров центробежного насоса
- •§ 35. Характеристики центробежного насоса и трубопровода
- •§ 36. Совместная работа центробежных насосов
- •§ 37. Осевая сила и способы ее разгрузки
- •§ 38. Основные сборочные единицы центробежных насосов
- •§ 39. Горизонтальные одноколесные
- •§ 40. Центробежные консольные и погружные химические насосы
- •§ 41. Центробежные герметичные электронасосы. Насосы из неметаллических материалов
- •§ 42. Типовые схемы насосных установок
- •Глава VI
- •§ 43. Общие положения по эксплуатации насосов
- •§ 44. Регулирование работы и смазывание насосов
- •§ 45. Автоматическое управление насосными установками
- •§ 46. Эксплуатация поршневых насосов
- •§ 47. Эксплуатация центробежных насосов
- •Глава VII
- •§ 48. Общие сведения
- •§ 49. Теоретический и действительный циклы работы одноступенчатого компрессора поршня выполняют диафрагмы (мембраны), называются диафраг-мовыми.
- •§ 50. Основные параметры поршневых компрессоров
- •§ 51. Способы регулирования производительности поршневых компрессоров
- •§ 52. Назначение и устройство основных сборочных единиц поршневых компрессоров
- •§ 53. Смазочные системы поршневых компрессоров
- •§ 54. Системы охлаждения поршневых компрессоров
- •§ 55. Газовые коммуникации
- •§ 56. Угловые крейцкопфные компрессоры
- •§ 57. Горизонтальные компрессоры
- •§ 58. Вертикальные компрессоры
- •§ 59. Поршневые компрессоры без смазывания цилиндров. Компрессоры без кривошипно-шатунного механизма
- •§ 60. Роторные и винтовые компрессоры
- •Глава VIII
- •§ 61. Принцип действия и классификация
- •§ 62. Теоретические основы работы центробежных компрессоров
- •§ 63. Основные сборочные единицы центробежных компрессоров
- •§ 64. Смазочная система центробежных компрессоров
- •§ 65. Вентиляторы
- •§ 66. Центробежные воздухо- и газодувки
- •§ 67. Многоступенчатые центробежные компрессоры
- •§ 68. Центробежные
- •§ 69. Осевые компрессоры
- •§ 70. Холодильные компрессоры
- •§ 71. Вспомогательное оборудование компрессорных установок.
- •Глава X
- •§ 72. Основные правила эксплуатации и технического обслуживания
- •§ 73. Эксплуатация поршневых компрессоров
- •§ 74. Автоматическое управление поршневыми компрессорными установками.
- •§ 75. Возможные неисправности поршневых компрессоров
- •§ 76. Эксплуатация центробежных компрессоров
- •§ 77. Автоматическое управление центробежными компрессорными установками
- •§ 78. Возможные неисправности центробежных компрессоров
- •§ 79. Безопасные условия эксплуатации компрессорных установок
- •Глава XI
- •§ 80. Электродвигатели
- •§ 81. Двигатели внутреннего сгорания
- •§ 82. Паровые машины
- •§ 83. Паровые и газовые турбины
- •§ 84. Гидравлический привод
- •§ 85. Промежуточные звенья привода
- •§ 86. Газомоторные компрессоры и газотурбинные установки
- •Глава XII
- •§ 87. Назначение и виды ремонтов
- •§ 88. Способы определения неисправностей. Подготовка оборудования к ремонту
- •§ 89. Ремонт сальников
- •§ 90. Ремонт цилиндров, поршней и поршневых колец
- •§ 91. Ремонт деталей кривошипно-шатунного механизма
- •§ 92. Ремонт лабиринтных уплотнений и думмисов
- •§ 93. Ремонт маслонасосов и маслосистем
- •§ 94. Ремонт и обслуживание вспомогательного оборудования
- •§ 95. Пуск после ремонта и сдача насосов и компрессоров в эксплуатацию
- •§ 96. Виды смазки для насосов и компрессоров
- •§ 97. Прокладочные и набивные материалы
- •Глава XIII
- •§ 98. Технологический регламент и должностные инструкции
- •§ 99. Бригадная форма организации и стимулирования труда
§ 68. Центробежные
циркуляционные
компрессоры
В установках синтеза аммиака для циркуляции азото-водородной смеси и компенсации потерь давления применяют центробежные циркуляционные компрессоры ЦЦК. Они выпускаются на базе разработанного типоразмерного ряда и обеспечивают производительность от 7 до 10 м3/мин в условиях всасывания и перепада давления от 1,0 до 3,0 МПа. Эксплуатируют компрессоры при температуре окружающего воздуха от —40 до +|50°С. Освоены два типа компрессоров: со встроенными внутрь корпуса приводом и выносным приводом. Машины первого типа соединяются с приводом через муфту. Такая конструкция надежна и удобна в эксплуатации и применяется при небольшом повышении давления.
Циркуляционные центробежные компрессоры выполняют на двух базах. За базу принят внутренний диаметр корпуса, определяемый габаритными размерами встраиваемого внутрь корпуса электродвигателя. Корпуса рассчитаны на давление 32 МПа. Корпус
Циркулирующая газовая смесь поступает в корпус высокого давления через верхнее отверстие в переднем фланце корпуса, проходит между стенкой корпуса и ребрами электродвигателя 2, охлаждая последний, и через окна входного устройства попадает в колесо первой ступени. Диффузор и обратный направляющий аппарат диафрагмы обеспечивают подачу газа из одного колеса в другое. Из выходного аппарата газ направляется в нагнетательный патрубок 6.
Для циркуляции газовой смеси и компенсации потерь давления в установках синтеза аммиака производительностью 600 т/сут создан компрессор 2ЦЦК-10/350-10. Этот компрессор по конструкции, изготовлению деталей и сборочных единиц, эксплуатационным качествам и оформлению находится на уровне лучших образцов зарубежных центробежных циркуляционных компрессоров для установок синтеза аммиака.
§ 69. Осевые компрессоры
Осевые компрессоры — быстроходные компрессоры большой производительности. Они более компактны и имеют более высокий КПД, чем центробежные компрессоры. В промышленности применяют осевые компрессоры производительностью от 3000 до 30 000 м3/ч, со степенью сжатия 3—6 и числом ступеней от 6 до 25. Частота вращения вала достигает 12 000 об/мин. Осевые компрессоры широко используют с приводом от газовой турбины в системе реактивных двигателей самолетов, в силовых электроустановках, доменном производстве, химической, нефтеперерабатывающей, нефтехимической промышленности, на магистральных газопроводах.
На рис. 91 дан продольный разрез и отдельные сборочные единицы осевого компрессора.
Корпус 1, отлитый из чугуна с повышенными механическими свойствами, имеет горизонтальный и вертикальный разъемы. Внутренний диаметр корпуса неодинаков по всей его длине. Имеются также осевые компрессоры, в которых ротор и внутренняя поверхность корпуса выполнены коническими. В корпусе укреплены направляющие лопатки 8. Заодно с корпусом отлиты два патрубка:
Ротор 7 — кованый, составной, барабанного типа, с постоянным диаметром, внутри пустотелый. На роторе укреплено 16 рядов рабочих лопаток 9. Для удаления конденсата, который может образоваться во время пуска или остановки внутри ротора, в торцовой стенке'со стороны нагнетания просверлены наклонные отверстия. Полувалы ротора укреплены в торцовых стенках и опираются на опорные подшипники скольжения 3. Смазывание подшипников — под давлением. Вал ротора с валом двигателя или турбины соединен муфтой 4. В местах прохода полувалов ротора через корпус установлены лабиринтные уплотнения.
Воздух через выходной патрубок и передний направляющий аппарат поступает на первый ряд лопаток корпуса, затем проходит последовательно все ступени компрессора, где давление его повышается, и через ряды спрямляющих лопаток поступает в диффузор, в котором скорость потока уменьшается, увеличивается давление и поток поворачивается.
КПД современных осевых компрессоров 0,85—0,9.
Контрольные вопросы, 1. На какие группы по конечному давлению можно разделить динамические компрессоры? 2. Перечислите основные параметры работы центробежного компрессора. 3. Объясните, как возникает осевая сила в компрессоре. 4. Из каких сборочных единиц состоит центробежный компрессор? 5. В чем заключается особенность смазочной системы центробежных компрессоров? 6. Какие контрольно-измерительные приборы включены в масляные системы центробежных компрессоров? 7. Как различают вентиляторы по направлению движения газа, по давлению? 8. На какое конечное давление рассчитаны газо- и воздуходувки? 9. Какими измерительными приборами оснащают осевые компрессоры?
Г л а в а IX
ХОЛОДИЛЬНЫЕ КОМПРЕССОРЫ И ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ КОМПРЕССОРНЫХ УСТАНОВОК