- •1) Основные понятия и определения тау
- •2. Передаточные функции импульсных систем.
- •1) Основные принципы регулирования. Принцип разомкнутого управления
- •2) Нелинейные сар. Устойчивость периодических решений
- •1) Основные принципы регулирования. Принцип обратной связи
- •2) Регулирование по возмущению и комбинированное регулирование
- •1) Основные принципы регулирования. Принцип компенсации
- •2) Статическое и астатическое регулирование.
- •1)Классификация сау. Системы стабилизации
- •2) Классификация сау. Следящие системы.
- •1).Классификация сау. Системы программного управления.
- •2) Типовые нелинейные звенья
- •1) Требования, предъявляемые к динамическим свойствам сау
- •2) Устойчивость импульсных систем. Критерий Раусса-Гурвица.
- •1) Математическое описание линейных сар.
- •2) Критерий устойчивости найквеста
- •1. Математическое описание линейных сар.
- •Передаточная функция звена.
- •2) Устойчивость линейных систем. Критерий устойчивости Найквиста.
- •1. Передаточная функция системы, соединенных между собой звеньев.
- •2. Устойчивость линейных систем. Критерий устойчивости Раусса-Гурвица.
- •1) Структурные схемы и их преобразование. Последовательное соединение звеньев.
- •1. Структурные схемы и их преобразование. Параллельное соединение звеньев.
- •1.Структурные схемы и их преобразования. Неединичная и единичная обратная связь.
- •2. Типовые звенья. Дифференциальное звено 2-го порядка.
- •1. Правило переноса узла:
- •2.Типовые звенья, диф звена 1-го порядка
- •1. Правило переноса сумматора и их перестановок
- •2. Типовые звенья. Колебательное звено
- •1)Характеристики динамических звеньев. Частотные характеристики
- •2. Типовые звенья. Апериодическое звено 1-го порядка (Инерционное)
- •1)Характеристики динамических звеньев. Прееходная функция системы
- •2)Структурные схемы и их преобразование. Последовательное соединение звеньев.
- •Билет 22
- •2. Типовые звенья. Идеально интегрирующее звено
- •1) Основные показатели качества системы
- •2. Типовые звенья. Апериодическое звено 1-го порядка (Инерционное)
- •1)Характеристики динамических звеньев Частотные характеристики
- •2. Типовые звенья. Колебательное звено
- •1) Синтез сар
- •2) Устойчивость импульсных систем
- •1) Критерий устойчивости найквеста
- •2. Типовые звенья. Идеально интегрирующее звено
- •1) Статическое и астатическое регулирование.
- •2) Показатели качества процесса регулирования:
- •2) Устойчивость импульсных систем
- •1) Классификация сау. Следящие системы
- •2)Типовые нелинейные звенья
1) Требования, предъявляемые к динамическим свойствам сау
Изменение неизменной величины во времени определяет переходный процесс и представляет собой динамическую характеристику по которой можно судить о качестве работы системы. Чтобы качественно выполнять задачу регулирования в различных условиях система должна обладать определенным запасом устойчивости, а также точн., кач.
2) Устойчивость импульсных систем. Критерий Раусса-Гурвица.
Устойчивость линейных систем
В процессе работы на систему действуют различные возмущающие силы, вызывающие ее отклонение от заданного закона движения. Если под влиянием возмущения система отклонилась от состояния равновесия и после прекращения действия внешнего возмущения снова вернулась в исходное состояние, то такая система устойчива.
Если под влиянием внешнего возмущения система будет отклоняться от состояния равновесия, а после прекращения действия возмущения система не возвращается в исходное состояние, а удаление системы с течением времени возрастает, то такая система называется неустойчивой.
В линейных системах отклонение при неустойчивом движении будет неограниченно возрастать.
Необходимое и достаточное условие устойчивости является выполнение требования, в соответствии с которым характеристическое уравнение системы должно иметь отрицательную вещественную часть. Наличие среди корней характеристического уравнения хотя бы одного корня с положительной вещественной частью свидетельствует о невыполнении этого условия, т.е. приводит к неустойчивости системы.
Устойчивость в линейной системе характеризуется затуханием переходного процесса. Т.к. затухание переходного процесса в свою очередь определяется только корнем характеристического уравнения
и не зависит от воздействия, то устойчивость является внутренним свойством линейной системы.
Для определения устойчивости системы необходимому и достаточному условию нужно уметь находить корни характеристического уравнения. Это можно сделать просто для уравнения 1-го и 2-го порядков. Реальные системы десятых, сотых порядков. Поэтому для анализа устойчивости без нахождения корней характеристического уравнения, используют критерии устойчивости.
КРИТЕРИЙ УСТОЙЧИВОСТИ РАУСА-ГУРВЕЦА
Необходимым и достаточным условием устойчивости системы любого порядка без решения характеристического уравнения, по рассмотрению его коэффициентов, были сформулированы учеными Раусом и Гурвицом.
Руас сказал, что
для выполнения условия устойчивости,
а следовательно для расположения всех
корней характеристического уравнения
в левой полуплоскости , необходимо и
достаточно, чтобы все коэффициенты
характеристического уравнения были
больше нуля.
Гурвец дополнил,
что для выполнения условия устойчивости,
а следовательно, для расположения вех
корней характеристического уравнения
в левой полуплоскости, необходимо и
достаточно, чтобы все n
диагональных миноров матрицы были
положительны.
Критерий устойчивости Рауса и Гурвеца является алгебраическим, т.к. при их использовании задача определения знаков вещественных частей хар. уравнения сводится к выполнению общих алгебраических операций.
Билет 10
