
- •1) Основные понятия и определения тау
- •2. Передаточные функции импульсных систем.
- •1) Основные принципы регулирования. Принцип разомкнутого управления
- •2) Нелинейные сар. Устойчивость периодических решений
- •1) Основные принципы регулирования. Принцип обратной связи
- •2) Регулирование по возмущению и комбинированное регулирование
- •1) Основные принципы регулирования. Принцип компенсации
- •2) Статическое и астатическое регулирование.
- •1)Классификация сау. Системы стабилизации
- •2) Классификация сау. Следящие системы.
- •1).Классификация сау. Системы программного управления.
- •2) Типовые нелинейные звенья
- •1) Требования, предъявляемые к динамическим свойствам сау
- •2) Устойчивость импульсных систем. Критерий Раусса-Гурвица.
- •1) Математическое описание линейных сар.
- •2) Критерий устойчивости найквеста
- •1. Математическое описание линейных сар.
- •Передаточная функция звена.
- •2) Устойчивость линейных систем. Критерий устойчивости Найквиста.
- •1. Передаточная функция системы, соединенных между собой звеньев.
- •2. Устойчивость линейных систем. Критерий устойчивости Раусса-Гурвица.
- •1) Структурные схемы и их преобразование. Последовательное соединение звеньев.
- •1. Структурные схемы и их преобразование. Параллельное соединение звеньев.
- •1.Структурные схемы и их преобразования. Неединичная и единичная обратная связь.
- •2. Типовые звенья. Дифференциальное звено 2-го порядка.
- •1. Правило переноса узла:
- •2.Типовые звенья, диф звена 1-го порядка
- •1. Правило переноса сумматора и их перестановок
- •2. Типовые звенья. Колебательное звено
- •1)Характеристики динамических звеньев. Частотные характеристики
- •2. Типовые звенья. Апериодическое звено 1-го порядка (Инерционное)
- •1)Характеристики динамических звеньев. Прееходная функция системы
- •2)Структурные схемы и их преобразование. Последовательное соединение звеньев.
- •Билет 22
- •2. Типовые звенья. Идеально интегрирующее звено
- •1) Основные показатели качества системы
- •2. Типовые звенья. Апериодическое звено 1-го порядка (Инерционное)
- •1)Характеристики динамических звеньев Частотные характеристики
- •2. Типовые звенья. Колебательное звено
- •1) Синтез сар
- •2) Устойчивость импульсных систем
- •1) Критерий устойчивости найквеста
- •2. Типовые звенья. Идеально интегрирующее звено
- •1) Статическое и астатическое регулирование.
- •2) Показатели качества процесса регулирования:
- •2) Устойчивость импульсных систем
- •1) Классификация сау. Следящие системы
- •2)Типовые нелинейные звенья
2. Типовые звенья. Апериодическое звено 1-го порядка (Инерционное)
В курсе ТАУ изучаются следующие типы звеньев:
Пропорциональное звено;
Интегрирующее звено;
Дифференцирующее звено;
Апериодическое звено 1-го порядка;
Реальное дифференцирующее звено;
Форсирующее звено 1-го порядка;
Колебательное звено;
Апериодическое звено 2-го порядка;
Звено чистого запаздывания.
Апериодическое звено первого порядка
Передаточная функция: , где K – статический коэффициент передачи, Т – постоянная времени (измеряется в секундах).
Уравнение звена
Статическая характеристика: yст =W(0)·xст= К·xст (как у пропорционального звена). Переходная функция: . Зависимость h(t) – экспоненциальная.
Уравнение АЧХ и ФЧХ
Получим аналитические выражения для АЧХ и ФЧХ.
Амплитудная частотная характеристика:
Фазовая частотная характеристика:
АФЧХ
Г одограф Найквиста для апериодического звена имеет вид полуокружности.
Пример ЛАЧХ и ЛФЧХ апериодического звена для К>1.
Билет 24
1)Характеристики динамических звеньев Частотные характеристики
Рассмотрим передаточную функцию, состоящую из n-го количества элементов.
Последовательность выражений позволяет найти амплитуду и фазу колебаний на выходе системы при гармоническом воздействии на ее входе.
Модуль этого выражения показывает, во сколько раз увеличивается или уменьшается амплитуда колебаний на выходе системы по сравнению с амплитудой колебаний на входе.
Аргумент вектора F(jω) описывает фазовый угол колебаний по отношению колебаниям на входе => (*) определяет частотную характеристику, называемую амплитудно-фазовой частотной характеристикой (АФЧХ).
АФЧХ строится на комплексной плоскости j – мнимая единица.
- коэффициент, характеризующий изменение амплитуды при изменении частоты, при изменяющейся частоте, называется амплитудно-частотной характеристикой (АЧХ).
дает представление о фазовом сдвиге выходных колебаний и он называется фазово-частотной характеристикой (ФЧХ)
АФЧХ:
В
ещественные
или мнимые частотные характеристики
связаны с АЧХ и ФЧХ следующим образом:
При анализе САР на устойчивость и качества процесса регулирования, а также при решении других задач, часто обращаются к ЛЧХ
Усиление L(ω) = 20lg|Ф(jω)| = 20lgA(ω) [дБ] – является единицей логарифмической относительно величины. Изменения относительно двух величин в 10 раз соответствует изменению усиления на 20 дБ.
Известно, что АЧХ представляет собой отношение 2-х амплитуд: входного и выходного сигналов.
2. Типовые звенья. Колебательное звено
В курсе ТАУ изучаются следующие типы звеньев:
Пропорциональное звено;
Интегрирующее звено;
Дифференцирующее звено;
Апериодическое звено 1-го порядка;
Реальное дифференцирующее звено;
Форсирующее звено 1-го порядка;
Колебательное звено;
Апериодическое звено 2-го порядка;
Звено чистого запаздывания.
Колебательное звено
Передаточная функция: ,
где К – статический коэффициент передачи [К=W(0)], Т – постоянная времени (единица измерения – секунды), μ – коэффициент демпфирования (безразмерная величина), находится в пределах 0<μ<1.
Свойства колебательного звена зависят от значения полюсов его передаточной функции, т.е. от корней уравнения:
.
При 0<μ<1 получим два комплексно-сопряженных корня.
, где , .
Уравнение звена:
Переходная функция колебательного звена описывается формулой:
Колебательный характер переходной функции определяется наличием в ней периодических функций синуса и косинуса. Колебания будут затухать с течением времени, т.к. множитель при этих функциях уменьшается с увеличением времени и стремится к нулю при (t→∞).
В автоматических системах различают свободные и вынужденные колебания. Вынужденные колебания выходной величины звена возникают из-за колебаний воздействия (например, при синусоидальном воздействии). Колебания переходной функции колебательного звена – это свободные колебания: воздействие на звено не периодическое, а колебания возникают из-за собственных колебательных свойств звена.
Можно сделать следующие выводы о виде переходной функции:
1) Установившееся значение переходной функции равно К:
.
2) Модуль мнимой части полюсов передаточной функции Ω представляет собой угловую частоту колебаний. Период колебаний равен 2π/ω.
3) Модуль действительной части полюсов передаточной функции α определяет скорость затухания колебаний. Чем больше α, тем быстрее затухают колебания. При одной и той же постоянной времени Т колебания будут затухать тем быстрее, чем больше значение коэффициента демпфирования μ.
Билет 25
1) ПФ звена
Передаточная функция системы – отношение преобразования Лапласа выходного сигнала к преобразованию Лапласа входного сигнала при нулевых нач. условиях.
Ф(s)=X(s)/G(s), s=p – показатель дифференцирования
2) Статическое и астатическое САР.
Системы стабилизации, программного управления и следящие системы можно разделить на 2 группы:
1 – статические;
2 - астатические;
1)
2)
САР будет статической по отношению к возмущающему или управляющему воздействиям, если при стремлении этого воздействия к постоянной величине, отклонение регулируемой величины также стремится к постоянной величине не равн нулю и зависящей от величины воздействия.
САР явл-ся астатической по возмущению и управляющему воздействию, если при стремлении возмущающего или управ. воздействия к постоянной величине отклонения регулируемая величина стремится к нулю и не зависит от величины приложенного воздействия. Одна и та же САР может быть астатической по управлению и статической по возмущению, либо наоборот.
Билет 26
1. Нелинейной системой автоматического управления наз-ся такая система которая содержит хотябы одно звено описываемое нелинейным уравнением.
В применении к нелинейности состоит
Пусть передаточная функция замкнутой системы будет представлена W(S)=K(S)/D(S) в этом случае диф уравнение замкнутой нелинейной САР можно представить D(S)X(S)+K(S)D(X)=0
Пусть функция f(x) однозначная функция, заменяем ее суммой линейной функции не линейных слагаемых: f(x)=c(x)+µφ(x) выбираем с таким чтобы уравнение при µ=0 имело следующий вид [D(S)+CK(S)]X=0
Решение этого уравнения имело бы чисто мнимые корни, вот такая линеаризация называется эквивалентной.
2. Построение желаемой ЛАХ. Ж. ЛАХ опред. показ. кач. и точн. проц. регулир. Низночастот. ее часть обусл. точн. воспро. медл. измен. возд. По ней можно опред. добротность по скорости и добротность по ускорению, а также статич. ошибку. Частота среза системы опред. с помощью номограмм Солодникова. По перерегулированию опред. вещ. чать САР, а по вещ. части наход. время регулир.: tрег.=kπ/ωсреза, k-коэф. Найдя tрег. можно опред. частоту среза ωсреза. Для наиб. простой реализ. послед. корректир. устройства изломн. накл. жел. ЛАХ (низкочатс.) и ЛАХ желаем. части совпад.
ε(t)=ω3/Dω+ ε3/Dε, ωk=Dω, ωl=Dε^0.5, ω=1/T, tрег.=4,2π/ωсреза, Wустр.=Wжел.-Wнеизм.
Билет 27