- •1) Основные понятия и определения тау
- •2. Передаточные функции импульсных систем.
- •1) Основные принципы регулирования. Принцип разомкнутого управления
- •2) Нелинейные сар. Устойчивость периодических решений
- •1) Основные принципы регулирования. Принцип обратной связи
- •2) Регулирование по возмущению и комбинированное регулирование
- •1) Основные принципы регулирования. Принцип компенсации
- •2) Статическое и астатическое регулирование.
- •1)Классификация сау. Системы стабилизации
- •2) Классификация сау. Следящие системы.
- •1).Классификация сау. Системы программного управления.
- •2) Типовые нелинейные звенья
- •1) Требования, предъявляемые к динамическим свойствам сау
- •2) Устойчивость импульсных систем. Критерий Раусса-Гурвица.
- •1) Математическое описание линейных сар.
- •2) Критерий устойчивости найквеста
- •1. Математическое описание линейных сар.
- •Передаточная функция звена.
- •2) Устойчивость линейных систем. Критерий устойчивости Найквиста.
- •1. Передаточная функция системы, соединенных между собой звеньев.
- •2. Устойчивость линейных систем. Критерий устойчивости Раусса-Гурвица.
- •1) Структурные схемы и их преобразование. Последовательное соединение звеньев.
- •1. Структурные схемы и их преобразование. Параллельное соединение звеньев.
- •1.Структурные схемы и их преобразования. Неединичная и единичная обратная связь.
- •2. Типовые звенья. Дифференциальное звено 2-го порядка.
- •1. Правило переноса узла:
- •2.Типовые звенья, диф звена 1-го порядка
- •1. Правило переноса сумматора и их перестановок
- •2. Типовые звенья. Колебательное звено
- •1)Характеристики динамических звеньев. Частотные характеристики
- •2. Типовые звенья. Апериодическое звено 1-го порядка (Инерционное)
- •1)Характеристики динамических звеньев. Прееходная функция системы
- •2)Структурные схемы и их преобразование. Последовательное соединение звеньев.
- •Билет 22
- •2. Типовые звенья. Идеально интегрирующее звено
- •1) Основные показатели качества системы
- •2. Типовые звенья. Апериодическое звено 1-го порядка (Инерционное)
- •1)Характеристики динамических звеньев Частотные характеристики
- •2. Типовые звенья. Колебательное звено
- •1) Синтез сар
- •2) Устойчивость импульсных систем
- •1) Критерий устойчивости найквеста
- •2. Типовые звенья. Идеально интегрирующее звено
- •1) Статическое и астатическое регулирование.
- •2) Показатели качества процесса регулирования:
- •2) Устойчивость импульсных систем
- •1) Классификация сау. Следящие системы
- •2)Типовые нелинейные звенья
1. Правило переноса сумматора и их перестановок
При переносе сумматора по направлению передачи сигнала нужно в линию по 2-ой связи сумматора вставить звено с передаточной функцией = передаточной функции того звена через которое перенесли сумматор. Рисунок нарисовать.
При переносе сумматора через звено против направления передачи сигнала нужно по 2-ой линии связи сумматора вставить звено с ПФ = обратной ПФ того звена через которое перенесли сумматор. Рисунок нарисовать.
|
|
Перестановка сумматоров результата не меняет – выходной сигнал не изменяется.
|
|
2. Типовые звенья. Колебательное звено
В курсе ТАУ изучаются следующие типы звеньев:
Пропорциональное звено;
Интегрирующее звено;
Дифференцирующее звено;
Апериодическое звено 1-го порядка;
Реальное дифференцирующее звено;
Форсирующее звено 1-го порядка;
Колебательное звено;
Апериодическое звено 2-го порядка;
Звено чистого запаздывания.
Колебательное звено
Передаточная
функция:
,
где К – статический коэффициент передачи [К=W(0)], Т – постоянная времени (единица измерения – секунды), μ – коэффициент демпфирования (безразмерная величина), находится в пределах 0<μ<1.
Свойства колебательного звена зависят от значения полюсов его передаточной функции, т.е. от корней уравнения:
.
При 0<μ<1 получим два комплексно-сопряженных корня.
,
где
,
.
Уравнение звена:
Переходная функция колебательного звена описывается формулой:
Колебательный
характер переходной функции определяется
наличием в ней периодических функций
синуса и косинуса. Колебания будут
затухать с течением времени, т.к. множитель
при этих функциях
уменьшается
с увеличением времени и стремится к
нулю при (t→∞).
В автоматических системах различают свободные и вынужденные колебания. Вынужденные колебания выходной величины звена возникают из-за колебаний воздействия (например, при синусоидальном воздействии). Колебания переходной функции колебательного звена – это свободные колебания: воздействие на звено не периодическое, а колебания возникают из-за собственных колебательных свойств звена.
Можно сделать следующие выводы о виде переходной функции:
1) Установившееся значение переходной функции равно К:
.
2) Модуль мнимой части полюсов передаточной функции Ω представляет собой угловую частоту колебаний. Период колебаний равен 2π/ω.
3) Модуль действительной части полюсов передаточной функции α определяет скорость затухания колебаний. Чем больше α, тем быстрее затухают колебания. При одной и той же постоянной времени Т колебания будут затухать тем быстрее, чем больше значение коэффициента демпфирования μ.
Билет 19
1)Характеристики динамических звеньев. Частотные характеристики
Частотные характеристики
Рассмотрим передаточную функцию, состоящую из n-го количества элементов.
Последовательность выражений позволяет найти амплитуду и фазу колебаний на выходе системы при гармоническом воздействии на ее входе.
Модуль этого выражения показывает, во сколько раз увеличивается или уменьшается амплитуда колебаний на выходе системы по сравнению с амплитудой колебаний на входе.
Аргумент вектора F(jω) описывает фазовый угол колебаний по отношению колебаниям на входе => (*) определяет частотную характеристику, называемую амплитудно-фазовой частотной характеристикой (АФЧХ).
АФЧХ строится на
комплексной плоскости
j
– мнимая единица.
-
коэффициент, характеризующий изменение
амплитуды при изменении частоты, при
изменяющейся частоте, называется
амплитудно-частотной характеристикой
(АЧХ).
дает представление
о фазовом сдвиге выходных колебаний и
он называется фазово-частотной
характеристикой (ФЧХ)
Вещественные или мнимые частотные характеристики связаны с АЧХ и ФЧХ следующим образом:
При анализе САР на устойчивость и качества процесса регулирования, а также при решении других задач, часто обращаются к ЛЧХ
Усиление L(ω) = 20lg|Ф(jω)| = 20lgA(ω) [дБ] – является единицей логарифмической относительно величины. Изменения относительно двух величин в 10 раз соответствует изменению усиления на 20 дБ.
Известно, что АЧХ представляет собой отношение 2-х амплитуд: входного и выходного сигналов.
