Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
IV Синхронные машины.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
638.98 Кб
Скачать

Методы регулирования реактивной и активной мощности генератора.

Как только что видели, что если изменять возбуждение генератора, то тем самым будем изменять реактивную мощность, отдавать, либо потреблять её.

Регулировать активную мощность можно, только изменяя механическую мощность, со стороны паровой турбины, либо гидротурбины. При увеличении отдаваемой активной мощности, необходимо увеличить и механическую мощность со стороны турбины.

12. Векторные диаграммы синхронного двигателя

При работе синхронной машины в режиме генератора напряжение на его зажимах равно разности между ЭДС Е0 и падениями напряжений на различных индуктивных сопротивлениях, а при работе в режиме двигателя напряжение Uс равно сумме ЭДС и падений напряжения на индуктивных сопротивлениях. Покажем векторную диаграмму для явнополюсного синхронного двигателя в перевозбужденном режиме при известных параметрах r, Xd, Xq.

Рис. 38 Рис. 39.

При перевозбужденном режиме (рис 38) ток опережает напряжение на угол φ. Ток якоря I разложим по осям d,q относительно вектора Е0. Токи Id, Iq создают потоки, а они создают ЭДС Ea = -Ir, сумма ЭДС дает нам вектор напряжения Uc. Угол θ – угол между вектором напряжения сети Uc и составляющей напряжения, которая уравновешивает ЭДС Е0.

На рис. 39 представлена упрощенная диаграмма синхронного двигателя для неявнополюсной машины.

В синхронном неявнополюсном двигателе ток по осям не разлагается. Синхронное индуктивное сопротивление Xc=Xd=Xs+Xad. Ток статора создает поток рассеяния и поток якоря. Оба этих потока создают ЭДС – jIXc отстающей от вектора тока на 900. Напряжение сети Uс уравновешивается суммой ЭДС Е=-Uc. Если из этой суммы вычесть ЭДС – jIXc, то получим вектор ЭДС Е0. ЭДС Е0 и –jIXc уравновешиваются составляющими напряжения –Е0 и jIXc. Угол θ есть угол сдвига между вектором напряжения сети Uc и составляющей напряжения –Е0.

Угловые характеристики синхронного двигателя

Синхронная машина обратима, т.е. можно работу синхронного генератора перевести в режим двигателя. При этом угол θ (если для генератора его считать положительным) изменит свой знак.

Выражение электромагнитной мощности и момента для синхронного двигателя аналогичны генератору. На рис. 40 представлены угловые характеристики для неявнополюсной машины режима генератора и двигателя.

Рис. 40.

Как было указано выше, если машина работает в режиме генератора, то под действием момента турбины Мт угол θ (угол между осью индуктора и осью результирующего потока Фδ) возрастает. Электромагнитный момент – тормозной. Ось индуктора опережает ось потока Фδ, и угол θ считается положительным. Если разгрузить генератор до θ=0, то напряжение генератора уравновешено ЭДС генератора и ток статора I=0. Если теперь нагрузить машину внешней нагрузкой, то машина перейдет в двигательный режим. При этом, электромагнитный момент будет движущим, а момент тормозной Мв – момент на валу. Как видим из рис. 40 при двигательном режиме результирующий поток Фδ будет тянуть за собой индуктор. Угол θ будет отрицательным. Двигатель будет работать устойчиво в диапазоне угла θ=0-900.

Уравнения электромагнитной мощности и момента неявнополюсного синхронного двигателя запишутся:

Работа синхронного двигателя в режиме угловых характеристик соответствует режиму: iB=const, M=var.

13. Режим работы синхронного двигателя при постоянном моменте и переменном токе возбуждения (M=const, iB=var)

Для анализа этого режима синхронного двигателя воспользуемся упрощенной диаграммой для неявнополюсной машины (рис. 39). Используя только верхнюю ее часть и вектор напряжения сети Uc, расположим горизонтально.

Рис. 41.

Режим работы соответствует постоянству момента.

при

постоянство момента получается при E0sinθ=const, а следовательно -E0sinθ=const, поэтому, при изменении возбуждения, конец вектора –Е0 будет передвигаться по прямой θq параллельно вектору Uc, т.к.

ab=E01sinθ=const. Мощность также постоянная:

P=mUcIcosφ=const при mUc=const, P=const при Icosφ=Ia=const, т.е. активная составляющая тока будет постоянной и конец вектора тока I, при изменении тока возбуждения, будет перемещаться по прямой MN.

При недовозбужденном синхронном двигателе составляющей напряжения -Е0 соответствует ток I, который отстает от напряжения Uc на угол φ. Вектор тока I перпендикулярен продолжению вектора jIXc. Реактивная составляющая тока IL будет отставать на 900 от вектора напряжения Uc, т.е. этот ток чисто индуктивный. Значит, при недовозбуждении двигатель будет потреблять из сети индуктивный ток, а следовательно будет потреблять из сети и реактивную мощность.

При увеличении возбуждения величина –Е01 увеличится, а ток I уменьшится до Ia=I1 и будет минимальным. При этом режиме СД будет работать с cosφ=1 и реактивная мощность, не будет ни потребляться, ни отдаваться в сеть. При дальнейшем увеличении тока возбуждения составляющая напряжения будет равна –Е011, а ток I11 , будет опережать вектор напряжения сети на угол φ1. Этот режим соответствует перевозбужденному режиму. Реактивная составляющая тока будет емкостной (опережает вектор Uc на 900). Этот режим будет соответствовать отдаче реактивной мощности в сеть. Этот режим аналогичен включению статических емкостей в сеть.

Итак видим, что если изменять ток возбуждения iB, то величина тока статора I будет изменяться по величине и по фазе, т.е. можно регулировать cosφ. Это ценное свойство и определяет использование синхронных двигателей. Выпускаются СД обычно с опережающим cosφ=0.8. Зависимости тока статора I от тока возбуждения iB, I=f(iB) называются U-образные характеристики, рис. 42.

Рис. 42.

Р2 > Р1. Характеристики снимаются при P=const. Режим работы соответствующий току возбуждения от 0 до пунктирной линии недовозбужденный, а за пунктирной линией – перевозбужденный с отдачей реактивной энергии в сеть. Минимум тока статора соответствует cosφ=1. Посмотрим на примере, как улучшается cosφ установки при использовании перевозбужденного синхронного двигателя, рис. 43.

Рис. 43.

Предприятие без СД имеет в векторной форме Uc,I и угол φ, где ток IL – индуктивный ток, потребляемый из сети. Если теперь использовать СД в перевозбужденном режиме, получим емкостной ток Ic, который скомпенсирует частично ток IL. Результирующий реактивный ток уменьшится, а это приведет к уменьшению тока до I1, угол φ1 уменьшится, т.е. возрастет cosφ. Из этого примера видим, что используя на предприятиях СД в перевозбужденном режиме, улучшается cosφ установки и уменьшаются потери в сети.

ток , cosφ = Ia/I

Для улучшения энергетических показателей в энергосистемах большой мощности используются синхронные компенсаторы. Эти машины устанавливаются в конце высоковольтных линий и служат генераторами реактивной мощности. Поэтому синхронные компенсаторы работают в перевозбужденном режиме без нагрузки, т.е. в режиме холостого хода. Конструктивно, они не имеют наружного выхода вала. Воздушный зазор делается меньше, чем у генераторов, это приводит к уменьшению числа витков обмотки возбуждения. Мощность СК составляет 100-300 МВА. Идея работы СК с сетью показана на рис. 44.

Рис. 44.

Синхронный генератор вырабатывает активную и реактивную мощность, которая передается через трансформаторы и линию электропередачи предприятиям. Если установить в узле нагрузки А синхронный компенсатор в режиме перевозбуждения, то он на месте будет вырабатывать значительную часть реактивной мощности и отдавать ее потребителям предприятий разгрузив синхронный генератор и линию электропередач в значительной части от реактивной мощности. Это приведет к уменьшению общего тока ЛЭП, уменьшатся потери в СГ, тр-рах и ЛЭП.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]