
- •1.1 Электрическая цепь (эц), элемент эц, электрическая схема. Источники и приемники электрической энергии.
- •1.3 Законы Кирхгофа. Расчет цепей постоянного тока путем непосредственного применения законов Кирхгофа
- •1.2 Классификация электрических цепей (эц). Закон Ома для участка цепи, содержащего источник эдс.
- •1.4 Энергия и мощность цепей. Баланс мощностей. Мощность потерь и кпд.
- •1.5.Расчет цепей постоянного тока методом контурных токов
- •2.1 Получение синусоидальной эдс. Основные величины
- •2.2 Представление синусоидальных функций в различных формах.
- •1. Аналитический способ
- •2. Представление синусоидальных функций при помощи векторов
- •3. Представление синусоидальных функций при помощи комплексных чисел
- •2.3 Цепь переменного тока с резистором. Векторная диаграмма. Закон Ома в комплексной форме.
- •2.4 Цепь переменного тока с индуктивным элементом. Векторная диаграмма.
- •2.6 Резонанс напряжений. Векторная диаграмма.
- •2.7. Цепь переменного тока с последовательными соединениями эл-ов. Законы Ома и Кирхгофа в комплексной форме и для мгновенных значений.
- •2.8. Мощность цепи синусоидного тока (мгновенная, активная, реактивная, полная). Коэффициент мощности
- •3.1. Трехфазная электрическая цепь. Получение трехфазного тока. Способы изображения трехфазного тока, последовательность фаз
- •3.2. Схема соединений «звезда» - «звезда» с нулевым проводом. Векторная диаграмма. Симметричная и несимметричная нагрузка.
- •4.1.Магнитное поле, магнитная индукция.
- •4.2.Проводник с током в мп, самоиндукция.
- •4.3.Взаимная индукция. Закон полного тока.
- •5.1. Устройство и принцип действия трансформатора
- •5.2Работа трансформатора под нагрузкой.
- •5.3 Трехфазные трансформаторы. Устройство и принцип действия.
- •5.6 Измерительные трансформаторы.
- •6.1 Машины постоянного тока. Конструкция.
- •6.2 Принцип действия генератора постоянного тока.
- •6.4 Механическая характеристика асинхронного двигателя. Скольжение. Ммакс, Мном, Мпуск..
- •6.5 Генераторы постоянного тока с независимым возбуждением
- •6.6 Двигатель постоянного тока параллельного возбуждения. Схема. Механическая характеристика.
- •7.1 Принцип работы синхронного генератора(сг).
- •7.2 Основные величины и характеристики генераторов постоянного тока.
- •7.3 Устройство синхронных машин (см). Машины с явно и неявно выраженными полюсами.
- •7.4 Принцип работы синхронного двигателя (сд)
- •8.1 Пуск асинхронного двигателя (ад). Схема прямого пуска.
- •8.2 Потери в асинхронном двигателе. Коэффициент мощности.
- •9.1 Электронно-дырочный переход (эдп). Вольт-амперная характеристика (вах).
- •9.2 Полупроводниковые резисторы. Классификация. Обозначение в схеме. Основные свойства. Применение.
- •9.3 Полупроводниковые диоды, устройство и принцип действия. Вольтамперная характеристика.Типы диодов.Стабилитроны.Применение.
- •9 .4 Транзисторы. Устройство. Принцип действия. Параметры транзисторов. Обозначения в схемах. Применение.
- •9.5 Выпрямители. Схема однополупериодного выпрямления однофазного переменного тока.
- •9.6 Тиристоры. Устройство. Принцип действия. Вольт-амперная характеристика. Применение.
- •9.7 Оптоэлектронные элементы. Полупроводниковые оптоэлектронные приборы.
- •9.8 Электронные генераторы.
- •9.9 Элементы импульсной техники.
9 .4 Транзисторы. Устройство. Принцип действия. Параметры транзисторов. Обозначения в схемах. Применение.
Транзисторы (Т) – полупроводниковые приборы, служащие для усиления мощности электрических сигналов. По принципу действия транзисторы делятся на биполярные и полевые (униполярные).
Биполярный транзистор (БТ) – представляет собой трехслойную структуру. В зависимости от способа чередования слоев БТ называются транзисторами типа p-n-p или типа n-p-n
Транзистор называется биполярным, если физические процессы в нем связаны с движением носителей обоих знаков (свободных электронов и дырок).
В биполярном транзисторе средний слой называется базой (Б), один крайний слой – коллектором (К), а другой крайний слой – эмиттером (Э). Каждый слой имеет свой вывод, с помощью которых биполярный транзистор подключается в цепь.
Структура и условное обозначение одного из видов полевых транзисторов показана на рисунке. У полевых транзисторов так же, как и у биполярных – три электрода, называемые истоком, стоком и затвором.
Истоком (И) называется электрод, из которого в центральную область ПТ (канал) входят основные носители заряда n или p -типов.
Сток (С) – электрод, через который основные носители уходят из канала.
Затвор (З) – электрод, управляющий потоком носителей заряда.
Поскольку в полевом транзисторе ток определяется движением носителей только одного знака p или n -типов, эти транзисторы называют также униполярными.
Транзисторы используется для усиления, генерирования и преобразования электрических сигналов, в качестве активных (усилительных) элементов в усилительных и переключательных каскадах. Реле и тиристоры имеют больший коэффициент усиления мощности, чем транзисторы, но работают только в ключевом (переключательном) режиме.
Обозначение транзисторов разных типов. Условные обозначения: Э — эмиттер, К — коллектор, Б — база; З — затвор, И — исток, С — сток.
Транзисторы применяются
9.5 Выпрямители. Схема однополупериодного выпрямления однофазного переменного тока.
Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.[1][2]
Большинство выпрямителей создаёт не постоянные, а пульсирующие однонаправленные напряжение и ток, для сглаживания пульсаций которых применяют фильтры.
Выпрямители могут быть классифицированы по ряду признаков:
1 по схеме выпрямления – однополупериодные, двухполупериодные, мостовые, с удвоением (умножением) напряжения, многофазные и др.
2 По типу выпрямительного элемента – ламповые(кенотронные), полупроводниковые, газотронные и др.
3 По величине выпрямленного напряжения – низкого напряжения и высокого.
4 По назначению –для питания анодных цепей, цепей экранирующих сеток, цепей управляющих сеток, коллекторных цепей транзисторов, для зарядки аккумуляторов и др.
Однополупериодный выпрямитель.
Принципиальная схема
U1,2 - Напряжение на первичной, вторичной обмотке трансформатора
Uн – Напряжение на нагрузке.
Недостатками такой схемы выпрямления являются: Высокий уровень пульсации выпрямленного напряжения, низкий КПД, значительно больший, чем в других схемах, вес трансформатора и нерациональное использование в трансформаторе меди и стали.
Данная схема выпрямителя применяется крайне редко и только в тех случаях, когда выпрямитель используется для питания цепей с низким током потребления.