
- •1) Закон ампера
- •2) Закон био-савара-лапласа
- •3) Магнитное поле вблизи бесконечного длинного проводника с током
- •4) Магнитное поле в центре кругового витка с током
- •6) Сила лоренца, сила ампера
- •7) Поток вектора индукции магнитного поля
- •8) Циркуляция вектора индукции магнитного поля
- •9) Эдс индукции магнитного поля. Закон фарадея.
- •10) Индуктивность соленоида
- •11) Магнитное поле внутри соленоида
- •12) Эдс самоиндукции магнитного поля
- •13) Работа в магнитном поле
- •14) Рамка с током в магнитном поле
- •15) Энергия и плотность магнитного поля
- •16) Движение заряженных частиц в магнитном поле влекущих перпендикулярно вектору магнитной индукции
- •17) Движение заряженных частиц в магнитном поле влекущих под углом (не равное 90 градусов) к вектору магнитной индукции
- •18) Уравнения максвелла
- •5) Магнитное поле на поле оси кругового витка с током
1) Закон ампера
Закон Ампера устанавливает, что на проводник с током, помещенный в однородное магнитное поле, индукция которого В, действует сила, пропорциональная силе тока и индукции магнитного поля:
F = BIlsina (a - угол между направлением тока и индукцией магнитного поля ). Эта формула закона Ампера оказывается справедливой для прямолинейного проводника и однородного поля.
Если проводник имеет произвольную формулу и поле неоднородно, то Закон Ампера принимает вид:
dF = I*B*dlsina
Закон Ампера в векторной форме:
dF = I [dl B]
Сила Ампера направлена перпендикулярно плоскости, в которой лежат векторы dl и B.
Для определения направления силы, действующей на проводник с током, помещенный в магнитное поле, применяется правило левой руки.
Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца совпадали с направлением тока в проводнике, то отогнутый большой палец укажет направление силы, действующей на проводник с током, помещенный в магнитное поле.
2) Закон био-савара-лапласа
Обобщая экспериментальные данные французских физиков Био и Савара, Лаплас (французский математик) предложил формулу, по которой можно вычислять напряженность поля, создаваемого элементом тока в точке, расположенной от этого элемента на расстоянии r.
Если знать напряженность поля в данной точке, то, используя соотношение B = MMoH, можно определить индукцию поля в этой точке. Напряженность магнитного поля зависит только от силы тока, протекающего по проводнику, и его геометрии.
H - напряжённость(хар-ет только м.п. тока)
B - магнитная индукция(х-ет суммарное магнитное поле)
М - абсолютная магнитная проницаемость среды
Мо - м.п. вакуума
а вообщем М*Мо - это относительная м. проницаемость среды
3) Магнитное поле вблизи бесконечного длинного проводника с током
Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные линии (рис. 68).
Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине. В результате обобщения опытных данных французские ученые Био и'Савар установили, что магнитная индукция В (интенсивность магнитного поля) на расстоянии г от бесконечно длинного прямолинейного проводника с током определяется выражением:
где r — радиус окружности, проведенной через рассматриваемую точку поля; центр окружности находится на оси проводника (2πr — длина окружности);
I — величина тока, протекающего по проводнику.
Величина μа, характеризующая магнитные свойства среды, называется а б с о л ю т н о й м а г н и т ной проницаемостью среды.
Направление магнитных линий вокруг проводника с током можно определить по «правилу буравчика». Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных линий вокруг проводника.