
- •2. Привести примеры численных значений плотности основных видов строительных материалов.
- •6. Способы контроля прочности строительных материалов (разрушающие и неразрушающие). Методика испытания.
- •7. Привести примеры численных значений прочности основных видов строительных материалов.
- •8. Генетическая классификация горных пород (условия образования, общая характеристика и примеры).
- •9. Породообразующие минералы (определение, классификация, характеристики, примеры).
- •10. Изверженные глубинные горные породы (условия образования, характеристики, применение, примеры).
- •11. Изверженные излившиеся горные породы (условия образования, характеристики, применение, примеры).
- •12. Изверженные обломочные горные породы (происхождение, характеристики, применение, примеры)
- •13. Осадочные горные породы химического происхождения (образование, состав, характеристики, применение, примеры).
- •14. Осадочные горные породы органогенного происхождения (образование, состав, характеристики, применение, примеры).
- •15. Осадочные горные породы механического (обломочного) происхождения (образование, состав, характеристики, примеры)
- •16. Метаморфические горные породы (условия образования, состав, характеристики, примеры).
- •17. Материалы и изделия из природного камня (перечень продукции, характеристика, примеры).
- •18. Защита от коррозии природных каменных материалов и изделий в конструкциях и сооружениях (причины коррозии и способы защиты).
- •19. Перлит и вермикулит (состав, свойства, переработка и применение).
- •20. Горные породы, используемые в производстве вяжущих веществ (состав и переработка).
- •21. Сырье для производства керамических изделий (разновидности и технологические характеристики).
- •22. Добавки в глины при производстве керамических изделий (разновидности и назначение).
- •23. Глазури и ангобы (разновидности, составы и назначение).
- •24. Кирпич и камни керамические (сырье, способы производства, свойства и применение).
- •25. Марки кирпича и камней керамических и методика их определения.
- •26. Свойства кирпича и камней керамических (внешние показатели, плотность, водопоглощение, морозостойкость и прочность).
- •27. Требования к показателям внешнего вида кирпича и камней керамических.
- •28. Керамзит (сырье, технология получения, свойства и назначение).
- •29. Аглопорит (сырье, технология получения, свойства и назначение).
- •30. Керамические изделия (для внутренней и внешней облицовки, для покрытия пола и кровли, трубы, санитарно-технические и др. – разновидности, сырье, получение, основные характеристики и назначение).
- •31. Сырье для производства стекла (характеристика и назначение составляющих).
- •32. Производство листового стекла.
- •33. Листовые светопрозрачные и светорассеивающие стекла (оконное, витринное, узорчатое, армированное) – получение, характеристики и назначение.
- •34. Закаленное и ламинированное стекло (получение, характеристики и назначение).
- •35. Солнцезащитное, теплопоглощающее, теплоотражающее и другие стекла (получение, характеристики и назначение).
- •36. Светопрозрачные изделия и конструкции (блоки, стеклопрофилит, стеклопакеты, дверные полотна и т.П.) – получение, характеристики и назначение.
- •37. Отделочное стекло (цветное, зеркала, смальта, витражи, коврово-мозаичная плитка и т.П.) – получение, характеристики и назначение.
- •38. Пеностекло – получение, характеристики и назначение.
- •39. Стеклокристаллические изделия – получение, характеристики и назначение.
- •40. Минеральные вяжущие вещества (определение и классификация).
- •41. Воздушные вяжущие вещества (определение, разновидности, сырье, получение).
- •42. Магнезиальные вяжущие вещества (сырье, получение, характеристики и назначение)
- •43. Жидкое (растворимое) стекло – получение, характеристики и назначение.
- •44. Кислотоупорный цемент (получение, характеристики и назначение).
- •45. Гипсовые вяжущие вещества (сырье, получение, разновидности, характеристики и назначение).
- •46. Основные свойства гипсовых вяжущих и методика их определения.
- •47. Маркировка гипсовых вяжущих.
- •48. Воздушная известь (сырье, получение, разновидности, характеристики и применение).
- •49. Гашение воздушной извести, продукты гашения (формулы, характеристики).
- •50. Свойства воздушной извести и методика их определения.
- •51. Гидравлические вяжущие вещества (определение, разновидности, сырье, получение).
- •52. Гидравлическая известь (сырье, получение, характеристики и назначение).
- •53. Портландцемент (сырье и производство).
- •54. Основные клинкерные минералы (образование, формулы и характеристики).
- •56. Активность и марки портландцемента. Методика их определения.
- •57. Водопотребность, сроки схватывания и равномерность изменения объема портландцемента. Методика их определения.
- •58. Теория твердения портландцемента.
- •59. Твердение портландцемента во времени.
- •60. Коррозия цементного камня первого вида (причины и меры защиты).
- •61. Коррозия цементного камня второго вида (причины и меры защиты).
- •62. Коррозия цементного камня третьего вида (причины и меры защиты).
- •63. Классификация цементов.
- •64. Разновидности цементов (бтц, обтц, сбтц) – состав, основные характеристики и применение.
- •65. Пластифицированный и гидрофобный портландцементы (получение, основные характеристики и применение).
- •66. Активные минеральные добавки в цементы (состав и назначение).
- •67. Пуццолановый и шлакопортландцементы (получение, основные характеристики и применение).
- •68. Сульфатостойкие портландцементы (получение, основные характеристики и применение).
- •69. Глиноземистый, безусадочный, расширяющиеся и напрягающий цементы (получение, основные характеристики и применение).
- •70. Белый и цветные портландцементы (получение, основные характеристики и применение).
- •71. Хранение и транспортирование портландцемента.
- •72. Положительные и отрицательные свойства древесины как строительного материала.
- •73. Характеристика основных пород древесины, применяемых в строительстве.
- •74. Микроструктура древесины.
- •75. Макроструктура древесины.
- •76. Физические свойства древесины (плотность, пористость, влажность, усушка, разбухание, коробление, теплопроводность) – определение и взаимосвязь с другими свойствами.
- •77. Прочность и твердость древесины.
- •78. Пороки древесины (сучки и трещины) – виды, определение и влияние на качество пиломатериалов.
- •79. Пороки формы ствола дерева (сбежистость, закомелистость, кривизна и нарост) – определение и влияние на качество пиломатериалов.
- •80. Пороки строения древесины (косослой, свилеватость, завиток, крень, двойная сердцевина) – определение и влияние на качество пиломатериалов.
- •81. Круглые лесоматериалы (перечень, основные характеристики и назначение).
- •82. Пиломатериалы (пластины, четвертины, брусья, бруски, доски) – определение, характеристики и применение.
- •84. Шпон и фанера (разновидности, получение, характеристики и применение).
- •85. Дсп, двп, мдф (получение, основные характеристики и применение).
- •86. Арболит и фибролит (получение, основные характеристики и применение).
- •87. Защита древесины от разрушения (причины, вызывающие разрушение, и способы защиты).
- •88. Антисептики и антипирены (определение, разновидности и составы).
68. Сульфатостойкие портландцементы (получение, основные характеристики и применение).
Сульфатостойкий портландцемент (СПЦ) изготовляют тонким помолом из клинкера следующего минералогического состава: C3S - не более 50 %; С3А - не более 5; С3А + C4AF - не более 22; MgO - 5 %. Введение в цемент инертных и активных минеральных добавок не допускается. При таком минералогическом составе уменьшается возможность образования в цементном камне (бетоне) под действием сульфатных вод гидросуль- фоалюмината кальция - «цементной бациллы». Его выпускают марки 400. СПЦ применяют при изготовлении конструкций, подверженных действию сульфатных вод, а также морозостойкого бетона.
69. Глиноземистый, безусадочный, расширяющиеся и напрягающий цементы (получение, основные характеристики и применение).
Глиноземистый цемент - быстротвердеющее гидравлическое вяжущее, состоящее преимущественно из моноалюмината кальция (СаО • А12Оз). Свое название этот цемент получил от технического названия оксида алюминия А1203 - глинозем. Однако для его получения требуется иной клинкер (не портландцементный). Этот цемент является быстротвердеющим вяжущим веществом, набирающим через сутки твердения' прочность, которая составляет свыше 85 % марочной.
Получение. Сырьем для глиноземистого цемента служат бокситы и известняки. Бокситы - горная порода, состоящая из гидратов глинозема (А1203 • nН20) и примесей (в основном Fe203, Si02, СаО и др.). Бокситы широко используются в различных отраслях промышленности: для получения алюминия, абразивов, огнеупоров, адсорбентов и т. п., а месторождений с высоким содержанием А1203 очень немного.
Производство глиноземистого цемента более энергоемко, чем производство портландцемента. Клинкер глиноземистого цемента получают либо обжигом до плавления брикетов в электрических или доменных печах при температуре 1400... 1500 °С, либо обжигом шихты до спекания во вращающихся печах при температуре 1200... 1300 °С. Затем следует тонкий размол продукта, который сильно затруднен из-за его высокой твердости.
Состав. Химический состав глиноземистого цемента, получаемого разными методами, следующий: СаО - 35...45 %; А1203 - 30...50; Fe203 - 0...15; Si02 - 5... 15 %. В минеральном составе клинкера глиноземистых цементов преобладает одно- кальциевый алюминат СаО • А1203 (СА), определяющий основные свойства этого вяжущего. Кроме того, в нем присутствуют: СА2, C12A7; двухкальциевый силикат C2S, отличающийся, как известно, медленным твердением; в качестве неизбежной балластной примеси - геленит 2СаО • А1203 • 2Si02.
Твердение. Процесс твердения глиноземистого цемента и прочность образующегося цементного камня существенно зависят от температуры твердения. При нормальной температуре (до +25 °С) основной минерал цемента СА взаимодействует с водой с образованием кристаллического гидроалюмината кальция и гидроксида алюминия в виде гелевидной массы
2(СаО • А1203) + 11Н20 = 2СаО • А1203 • 8Н20 + 2А1(ОН)3 + Q.
Суммарное тепловыделение Q у глиноземистого цемента немного ниже, чем у портландцемента (около 300...400 кДж/кг), но протекает оно в очень короткие сроки (в первые сутки выделяется 70...80 % от общего количества теплоты). Поэтому возможен перегрев бетонов на глиноземистом цементе в случае больших объемов бетонирования.
Если же температура твердеющего глиноземистого цемента превысит 25...30 °С, то процесс твердения изменяется, и вместо С2АН8 образуется С3АН6; при этом прочность цементного камня будет ниже в 2...2,5 раза. Поэтому глиноземистый цемент не рекомендуется использовать для бетонирования массивных конструкций, где возможен саморазогрев бетона, а также в условиях жаркого климата. Изделия на глиноземистом цементе нельзя подвергать тепловой обработке. При работах в зимних условиях, напротив, саморазогрев и быстрое твердение делают глиноземистый цемент очень перспективным.
Свойства. Сроки схватывания глиноземистого цемента почти такие же, как у портландцемента: начало - не ранее 30 мин, конец - не позднее 12 ч (реально 4.. .5 ч). После окончания схватывания прочность нарастает очень быстро (лавинообразно).
Глиноземистый цемент выпускают марок 400, 500 и 600, определенных в трехсуточном возрасте, но уже через одни сутки образцы набирают прочность при сжатии соответственно не менее 23, 28 и 33 МПа.
Усадка глиноземистого цемента при твердении на воздухе ниже, чем у портландцемента в 3.. .5 раз; пористость цементного камня ниже примерно в 1,5 раза. Это связано с тем, что при одинаковой с портландцементом водопотребности глиноземистый цемент при твердении химически связывает 30...45 % воды от массы цемента (портландцемент - около 20 %).
Среда в процессе твердения и в затвердевшем цементном камне у глиноземистого цемента слабощелочная. Свободного Са(ОН)2 цементный камень не содержит. Это обстоятельство в сочетании с пониженной пористостью делает бетоны на глиноземистом цементе более устойчивыми к коррозии в пресной и минерализованной воде.
Применение. Глиноземистый цемент целесообразно использовать при аварийных и срочных работах, при зимнем бетонировании и в тех случаях, когда от бетона требуется высокая водостойкость и водонепроницаемость.
Специальная область применения глиноземистых цементов - жаростойкие бетоны. Объясняется это тем, что, во-первых, в продуктах твердения этого цемента отсутствует Са(ОН)2 (при нагреве переходит в СаО, который при контакте с водой гасится с увеличением объема) и, во-вторых, при высокой температуре (700...800 °С) между продуктами твердения цемента и заполнителями бетона начинаются реакции в твердой фазе, по мере протекания которых прочность бетона не падает, а повышается, так как бетон превращается в керамический материал.
Кроме того, глиноземистый цемент является компонентом многих расширяющихся цементов, которые даже при твердении на воздухе имеют небольшое увеличение в объеме. Безусадочные цементы - это расширяющиеся цементы, у которых расширение только компенсирует усадку. Поэтому такие цементы как бы сами уплотняют себя, делая бетон водонепроницаемым. Если расширяющиеся цементы используются в железобетонных конструкциях, то эффект расширения вяжущего может вызывать натяжение арматуры и сжатие самого бетона, что дополнительно защитит его от образования трещин. Такие цементы называют напрягающими.
Эффект расширения вяжущего может быть достигнут различными методами, например путем гашения свободного СаО, добавляемого в твердеющее вяжущее, либо с помощью образования эттрингита - гидросульфоалюмината кальция ЗСаО • А1203 • 3CaS04 • (31...32)Н20. Последнее возможно при взаимодействии алюминатов и сульфатов кальция в водной среде.
В твердеющем материале протекают два процесса - расширение, обусловленное процессом кристаллизации эттрингита (или гашения СаО) с увеличением объема новообразований и ростом внутренних растягивающих напряжений, и препятствующий расширению процесс - рост прочности самого цементного камня. Если рост расширяющихся новообразований будет протекать при недостаточной прочности цементного камня, то податливая гелеобразная масса будет сжиматься и заметного расширения не произойдет. И наоборот, если рост расширяющихся новообразований будет продолжаться, когда цементный камень набрал достаточно высокую прочность, то напряжения, обусловленные ростом кристаллов в ограниченном объеме, могут вызвать падение прочности и даже разрушение цементного камня.
В свою очередь деформации расширения могут быть свободными и связанными, т. е. когда расширение цементного камня ограничено арматурой или кондуктором (формой). Деформации бетона при свободном расширении выше, чем при связанном, что обусловлено низкой прочностью цементного камня в раНнем возрасте и его неспособностью напрягать кондуктор, а в более позднем возрасте - появлением микро- и макротрещин, которые увеличивают свободное расширение, но не вызывают дополнительного самонапряжения.
Связанные деформации вызывают самонапряжение, противодействуют развитию усадочных деформаций и способствуют самоуплотнению цементного камня, усилению контакта камня с заполнителем и кристаллизационных контактов. При изготовлении преднапряженных железобетонных конструкций в этом случае меньше потери преднапряжения и выше трещиностойкость получаемых изделий.
Главной задачей при разработке составов расширяющихся и безусадочных вяжущих является правильный выбор не только вида и количества расширяющихся компонентов, но и момента их образования относительно процесса формирования структуры цементного камня. Для различных видов расширяющихся цементов период наиболее интенсивного и безопасного расширения цементного камня составляет от 12 ч до 3...7 сут. в зависимости от свойств основного структурообразующего вяжущего.
Для обеспечения образования эттрингита в смесях с безусадочными и расширяющимися цементами должна присутствовать вода в продолжение всего периода твердения. Кроме того, эти цементы нельзя применять при работе конструкций при температурах выше 80 °С, так как постепенно разрушается важный кристаллический компонент цементного камня - эттрингнт: он отдает кристаллизационную воду, что сопровождается падением прочности.
Расширяющийся водонепроницаемый цемент получают совместным помолом глиноземистого цемента (70 %), гипса (20 %) и высокоосновного гидроалюмината кальция СдАНп (10 %). Он является быстросхватывающимся и быстротвердеющим гидравлическим вяжущим веществом (R^ через 6 ч - не менее 7,5 МПа, через 3 сут. - не ниже 30 МПа).
Линейное расширение твердеющего цемента на воздухе составляет в возрасте 1 сут. не менее 0,05 %, в возрасте 28 сут. - не менее 0,02 %. Цемент используют при восстановлении железобетонных конструкций, для гидроизоляции подземных сооружений, зачеканки трещин и стыков.
Гипсоглиноземистый расширяющийся цемент получают совместным помолом высокоглиноземистых шлаков (70 %) и дву- водного гипса (30 %). Гипсоглиноземистый расширяющийся цемент имеет начало схватывания не ранее 20 мин и конец схватывания не позднее 4 ч от начала затворения. При необходимости могут использоваться замедлители сроков схватывания - JICT, бура, уксусная кислота и др. Линейное расширение твердеющего цемента в состоянии теста нормальной густоты при твердении на воздухе составляет в возрасте 28 сут. не менее 0,1 %. Предел прочности при сжатии через 1 сут. твердения составляет 35 МПа для марки 400 и 45 МПа - для марки 500. Марки цемента соответствуют трехдневному возрасту. Гипсоглиноземистый расширяющийся цемент применяют для получения безусадочных и расширяющихся водонепроницаемых бетонов, гидроизоляционных штукатурных растворов, при бурении скважин и т. п. Он обладает морозо- и атмосферостойкостью в растворах и бетонах, изготовляемых на его основе.
Напрягающийся цемент (НЦ) получают совместным помолом клинкера портландцемента (65...75 %), двуводного гипса (6... 10 %) и высокоглиноземистого компонента (13...20 %). Сроки схватывания: начало - не ранее 30 мин, конец - не позднее 4 ч. Прочность через 1 сут. - не менее 15 МПа, через 28 сут. - не менее 50 МПа.
Напрягающий цемент обладает способностью к значительному расширению (до 4 %) при твердении в состоянии цементного теста нормальной густоты. В железобетоне НЦ создает после отвердевания в арматуре предварительное напряжение. Этим свойством как функцией химической энергии цемента пользуются при изготовлении предварительно напряженных железобетонных конструкций. С учетом величины достигаемой энергии самонапряжения, т. е. удельного давления в МПа, развиваемого при твердении НЦ в условиях ограничения свободного расширения, выделяют его разновидности НЦ-2, НЦ-4 и НЦ-6. Напрягающий цемент отличается также повышенными показателями водо- и газонепроницаемости, морозостойкости, прочности при растяжении и изгибе. Марки цемента (400 и 500) определяются испытанием образцов-бапочек из цементно-песчаного раствора Состава 1 : 1 в возрасте 28 сут.
Напрягающий цемент применяют для изготовления конструкций из самонапряженного железобетона, а также для гидроизоляции шахт, подвалов, зачеканки швов и т. д.
Перспективная область применения бетонов и растворов на расширяющихся и безусадочных вяжущих - бесшовные тонкослойные стяжки или лицевые покрытия полов большой площади. С помощью полимерных модификаторов таким смесям придают свойство самовыравнивания, а эффект безусадочности гарантирует трещиностойкость покрытия. Быстрое твердение и защитные полимерные добавки обеспечивают необходимое количество воды для протекания полной гидратации без какого-либо специального ухода.