
- •1.1. Зонная структура полупроводников
- •1.3.1. Распределение квантовых состояний в зонах
- •1.3.2. Концентрация носителей заряда и положение уровня Ферми
- •1.4. Концентрация электронов и дырок в собственном полупроводнике
- •5. Концентрация электронов и дырок в примесном полупроводнике
- •1.10. Уравнение непрерывности
- •2.4. Концентрация электронов и дырок в области пространственного заряда
- •1.9. Неравновесные носители
- •2.2. Термодинамическая работа выхода в полупроводниках p‑ и n‑типов
- •2.3. Эффект поля, зонная диаграмма при эффекте поля
- •2.5. Дебаевская длина экранирования
- •2.7. Барьер Шоттки при внешнем напряжении
- •2.6. Контакт металл – полупроводник. Барьер Шоттки
- •2.8. Распределение электрического поля и потенциала в барьере Шоттки
- •2.9. Вольт‑амперная характеристика барьера Шоттки
- •2.10. Образование и зонная диаграмма р-n перехода
- •2.10.3. Поле и потенциал в p‑n переходе
- •2.11. Компоненты тока и квазиуровни Ферми в р‑n переходе
- •2.12. Вольт‑амперная характеристика р‑n перехода
- •4.2. Варикапы
- •4.1. Характеристики идеального диода на основе p‑n перехода
- •4.3. Влияние генерации, рекомбинации и объемного сопротивления базы на характеристики реальных диодов
- •4.4. Стабилитроны
- •4.5. Туннельный и обращенный диоды
- •4.6. Переходные процессы в полупроводниковых диодах
- •5.1.Бп Общие сведения. История вопроса
- •5.2. Основные физические процессы в биполярных транзисторах
- •5.2.1. Биполярный транзистор в схеме с общей базой. Зонная диаграмма и токи
- •5.3. Формулы Молла – Эберса
- •5.4. Вольт‑амперные характеристики биполярного транзистора в активном режиме
- •5.5. Дифференциальные параметры биполярных транзисторов в схеме с общей базой
- •5.6. Коэффициент инжекции
- •5.7. Коэффициент переноса. Фундаментальное уравнение теории транзисторов
- •5.8. Дифференциальное сопротивление эмиттерного перехода
- •5.9. Дифференциальное сопротивление коллекторного перехода
- •5.10. Коэффициент обратной связи
- •5.12. Тепловой ток коллектора
- •5.14. Эквивалентная схема биполярного транзистора
- •5.13. Биполярный транзистор в схеме с общим эмиттером
- •5.15. Составные транзисторы. Схема Дарлингтона
- •5.16. Дрейфовые транзисторы
- •6.5. Эквивалентная схема и быстродействие мдп-транзистора
- •5.17. Параметры транзистора как четырехполюсника.
- •6.16. Полевой транзистор с затвором в виде р-n перехода
- •5.18. Частотные и импульсные свойства транзисторов
- •7.1. Общие сведения (тиристор)
- •7.2. Вольт‑амперная характеристика тиристора
- •7.3. Феноменологическое описание вах динистора
- •7.4. Зонная диаграмма и токи диодного тиристора в открытом состоянии
- •7.5. Зависимость коэффициента передачи α от тока эмиттера
- •7.6. Зависимость коэффициента м от напряжения vg. Умножение в коллекторном переходе
- •7.7. Тринистор
- •7.8. Феноменологическое описание вах тринистора
- •8.1. Общие сведения (диоды Ганна)
- •8.2. Требования к зонной структуре полупроводников
- •8.3. Статическая вах арсенида галлия
- •8.4. Зарядовые неустойчивости в приборах с отрицательным дифференциальным сопротивлением
- •8.5. Генерация свч‑колебаний в диодах Ганна
- •1. Конструкция, принцип действия мдп-транзисторов.
- •4. Эффект модуляции длины канала.
- •5. Эффект влияния подложки.
- •6. Дифференциальные параметры мдп-транзистора.
1.4. Концентрация электронов и дырок в собственном полупроводнике
Напомним, что полупроводник называется собственным, если в нем отсутствуют донорные и акцепторные примеси. В этом случае электроны появляются в зоне проводимости только за счет теплового заброса из валентной зоны, тогда n = p (рис. 1.5).
Рис. 1.5. Заброс из валентной зоны
При отсутствии внешних воздействий (освещение, электрическое поле и т.д.) будем обозначать концентрации свободных электронов и дырок с индексом нуль, то есть n0 и p0 соответственно. При n0 = p0 из (1.14) получаем:
(1.15)
Напомним, что значком ni принято обозначать концентрацию собственных носителей заряда в зоне проводимости и в валентной зоне. Для расчета NC и NV используется формула (1.11). Как следует из соотношения (1.15), концентрация собственных носителей определяется в основном температурой и шириной запрещенной зоны полупроводника. На рисунке 1.6 представлена зависимость концентрации собственных носителей от температуры для наиболее распространенных полупроводников – кремния, германия, арсенида и фосфида галлия. Видно, что при изменении ширины запрещенной зоны в диапазоне от 0,6 эВ для германия до 2,8 эВ для фосфида галлия собственная концентрация ni при комнатной температуре изменяется от значения 1013 см-3 до 101 см-3.
5. Концентрация электронов и дырок в примесном полупроводнике
Уравнение (1.14) справедливо только для равновесных носителей заряда, то есть в отсутствие внешних воздействий. В наших обозначениях
. (1.16)
Пусть полупроводник легирован донорами с концентрацией ND. При комнатной температуре в большинстве полупроводников все доноры ионизованы, так как энергии активации доноров составляют всего несколько сотых электронвольта. Тогда для донорного полупроводника (рис. 1.7)
. (1.17)
Концентрацию дырок в донорном полупроводнике найдем из (1.16):
. (1.18)
На рисунке 1.7 приведена зонная диаграмма полупроводника n-типа, показывающая положение энергетических уровней донорной примеси ED и схематическое соотношение концентраций основных n0 и неосновных p0 носителей.
Рис. 1.7. Зонная диаграмма полупроводника n-типа
Соответственно если полупроводник легирован акцепторами с концентрацией NA, то концентрации основных p0 и неосновных n0 носителей будут
и
. (1.19)
На рисунке 1.8 приведена зонная диаграмма полупроводника p-типа, показывающая положение энергетических уровней акцепторной примеси EA и схематическое соотношение концентраций основных p0 и неосновных n0 носителей.
Рис. 1.8. Зонная диаграмма полупроводника p-типа
1.10. Уравнение непрерывности
Динамика изменения неравновесных носителей по времени при наличии генерации и рекомбинации в полупроводнике, а также при протекании электрического тока определяется уравнением непрерывности. Для полупроводника n‑типа уравнение непрерывности будет описывать динамику изменения концентрации дырок pn:
, (1.43)
где Jp – дырочный ток, включающий дрейфовую и диффузионную компоненту, Gp – темп генерации неравновесных носителей, а Rp – темп рекомбинации.
Уравнение непрерывности – это уравнение сохранения числа частиц в единице объема. Это уравнение показывает, как и по каким причинам изменяется концентрация неравновесных дырок со временем. Во-первых, концентрация дырок может изменяться из-за дивергенции потока дырок, что учитывает первое слагаемое. Во-вторых, концентрация дырок может изменяться из-за генерации (ударная ионизация, ионизация под действием света и т. д.). В-третьих, концентрация дырок может изменяться из-за их рекомбинации, что учитывает третье слагаемое [10, 5].