- •Назначение релейной защиты.
- •Требования, предъявляемые к релейной защите
- •Повреждения и ненормальные режимы в электроустановках
- •Структурная схема и основные органы релейной защиты
- •Классификация реле
- •Трансформаторы тока. (Назначение. Принцип действия. Погрешности трансформатора тока. Схемы соединения тт)
- •Трансформаторы напряжения. (Назначение. Принцип действия. Погрешности трансформаторов напряжения)
- •Ступенчатые токовые защиты
- •Мтз (назначение, принцип действия, выбор параметров срабатывания)
- •То (назначение, принцип действия, выбор параметров срабатывания)
- •То с выдержкой времени (назначение, принцип действия, выбор параметров срабатывания).
- •Ступенчатые токовые направленные защиты
- •Дистанционная защита (Назначение. Принцип действия).
- •Защиты от замыканий на землю в сетях с малыми токами замыкания на землю
- •Сравнительная характеристика схем: 3-х трансформаторный фильтр токов i0 и схема с тнп
- •Продольная дифференциальная защита линий
- •Поперечная дифференциальная защита линий
- •Фильтры симметричных составляющих тока и напряжения. Фильтр тока нулевой последовательности, принцип действия, схема.
- •Фильтры симметричных составляющих тока и напряжения. Фильтр напряжения обратной последовательности. Назначение, принцип построения схемы, векторные диаграммы.
- •Нелинейные преобразователи. Преобразователи синусоидальных токов и напряжений в постоянные величины. Назначение, принцип построения схем.
- •Основные виды повреждений генераторов. Требования к защите генераторов от повреждений.
- •Продольная дифференциальная защита генераторов (назначение, принцип действия, выбор параметров срабатывания).
- •Поперечная дифференциальная защита генераторов (назначение, принцип действия).
- •Защита от однофазных замыканий на землю в цепи статора генератора (назначение, принцип действия).
- •Токовая защита обратной последовательности от несимметричных к.З. И перегрузок с интегрально-зависимой характеристикой (назначение, принцип действия).
- •Ненормальные режимы и повреждения обмотки ротора генератора. Защиты обмотки ротора генератора от замыканий на землю в двух точках (область применения, принцип действия).
- •Защиты сборных шин. Продольная дифференциальная защита шин. Выбор параметров срабатывания дифференциальной защиты шин.
- •Ток небаланса продольной дифференциальной защиты шин; снижение тока небаланса. Токи небаланса в дифференциальной защите
- •Дифференциальная защита шин для ру (область применения, принцип действия).
- •Повреждения и ненормальные режимы работы электродвигателей. Основные защиты электродвигателей.
- •Основные виды защит электродвигателей. Защиты электродвигателей от междуфазных к.З. (область применения, выбор параметров срабатывания).
- •Перегрузка электродвигателей. Защита от перегрузки (область применения, выбор параметров срабатывания).
- •Защита электродвигателей от однофазных замыканий на землю в обмотке статора.
- •Защита синхронных электродвигателей от асинхронного хода.
- •Повреждения и ненормальные режимы работы силовых трансформаторов (автотрансформаторов). Назначение и основные виды защит трансформаторов и автотрансформаторов.
- •Продольная защита трансформаторов (автотрансформаторов) (назначение, принцип действия, выбор параметров срабатывания).
- •43. Токи небаланса в дифференциальной защите трансформаторов (автотрансформаторов).
- •Газовая защита трансформаторов (автотрансформаторов) (область применения, назначение, принцип действия).
- •Защита генераторов блоков от повышения напряжения.
- •Защита генераторов блоков от замыкания на землю.
- •Замыканий на землю на стороне генераторного напряжения;
- •Замыканий на землю в одной точке цепи возбуждения
- •Замыканий на землю во второй точке цепи возбуждения турбогенератора мощностью менее 160 мВт;
- •Необходимость и способы резервирования действий релейной защиты и выключателей.
- •Принцип выполнения уров.
- •Отстройка от токов небаланса установившегося режима в схемах дифференциальных защит. Принцип магнитного торможения.
- •Организация постоянного оперативного тока
- •Организация переменного оперативного тока
- •Комплекс рза вл 110 кВ
- •Комплекс рза т 110 кВ и ниже.
- •Комплекс рза вл 35,10 кВ.
- •Требования к устройствам апв, классификация схем апв
- •Назначение, принцип действия и область применения авр
- •Назначение, принцип действия и область применения ачр и чапв
- •Назначение, принцип действия и область применения защиты минимального напряжения
Повреждения и ненормальные режимы работы электродвигателей. Основные защиты электродвигателей.
1.Виды повреждений и ненормальных режимов работы ЭД.
Повреждения электродвигателей. В обмотках электродвигателей могут возникать замыкания на землю одной фазы статора, замыкания между витками и многофазные КЗ. Замыкания на землю и многофазные КЗ могут также возникать на выводах электродвигателей, в кабелях, муфтах и воронках. Короткие замыкания в электродвигателях сопровождаются прохождением больших токов, разрушающих изоляцию и медь обмоток, сталь ротора и статора. Для защиты электродвигателей от многофазных КЗ служит токовая отсечка или продольная дифференциальная защита, действующие на отключение.
Однофазные замыкания на землю в обмотках статора электродвигателей напряжением 3—10 кВ менее опасны по сравнению с КЗ, так как сопровождаются прохождением токов 5—20 А, определяемых емкостным током сети. Учитывая сравнительно небольшую стоимость электродвигателей мощностью менее 2000 кВт, защита от замыканий на землю устанавливается на них при токе замыкания на землю более 10 А, а на электродвигателях мощностью более 2000 кВт — при токе замыкания на землю более 5 А защита действует на отключение.
Защита от витковых замыканий на электродвигателях не устанавливается. Ликвидация повреждений этого вида осуществляется другими защитами электродвигателей, поскольку витковые замыкания в большинстве случаев сопровождаются замыканием на землю или переходят в многофазное КЗ.
Электродвигатели напряжением до 600 В защищаются от КЗ всех видов (в том числе и от однофазных) с помощью плавких предохранителей или быстродействующих электромагнитных расцепителей автоматических выключателей.
Ненормальные режимы работы. Основным видом ненормального режима работы для электродвигателей является перегрузка их токами больше номинального. Допустимое время перегрузки электродвигателей, с, определяется по следующему выражению:
Рис. 6.1. Зависимость тока электродвигателя от частоты вращения ротора.
где k — кратность тока электродвигателя по отношению к номинальному; А — коэффициент, зависящий от типа и исполнения электродвигателя: А == 250 — для закрытых электродвигателей, имеющих большую массу и размеры, А = 150 — для открытых электродвигателей.
Перегрузка электродвигателей может возникнуть вследствие перегрузки механизма (например, завала углем мельницы или дробилки, забивания пылью вентилятора или кусками шлака насоса золоудаления и т. п.) и его неисправности (например, повреждения подшипников и т. п.).
Токи, значительно превышающие номинальные, проходят при пуске и самозапуске электродвигателей. Это происходит вследствие уменьшения сопротивления электродвигателя при уменьшении его частоты вращения.
Зависимость тока электродвигателя I от частоты вращения п при постоянном напряжении на его выводах приведена на рис. 6.1. Ток имеет наибольшее значение, когда ротор электродвигателя остановлен; этот ток, называемый пусковым, в несколько раз превышает номинальное значение тока электродвигателя. Защита от перегрузки может действовать на сигнал, разгрузку механизма или отключение электродвигателя.
После отключения КЗ напряжение на выводах электродвигателя восстанавливается и частота его вращения начинает увеличиваться. При этом по обмоткам электродвигателя проходят большие токи, значения которых определяются частотой вращения электродвигателя и напряжением на его выводах. Снижение частоты вращения всего на 10—25 % приводит к уменьшению сопротивления электродвигателя до минимального значения, соответствующего пусковому току. Восстановление нормальной работы электродвигателя после отключения КЗ называется самозапуском, а токи, проходящие при этом, — токами самозапуска.
На всех асинхронных электродвигателях самозапуск может быть осуществлен без опасности их повреждения, и поэтому их защита должна быть отстроена от режима самозапуска. От возможности и длительности самозапуска асинхронных электродвигателей основных механизмов собственных нужд зависит бесперебойная работа тепловых электростанций. Если из-за большого снижения напряжения нельзя обеспечить самозапуск всех работающих электродвигателей, часть из них приходится отключать. Для этого используется специальная защита минимального напряжения, отключающая неответственные электродвигатели при снижении напряжения на их выводах до 60—70 % номинального.
В случае обрыва одной из фаз обмотки статора электродвигатель продолжает работать. Частота вращения ротора при этом несколько уменьшается, а обмотки двух неповрежденных фаз перегружаются током в 1,5—2 раза большим номинального. Защита электродвигателя от работы на двух фазах применяется лишь на электродвигателях, защищенных предохранителями, если двухфазный режим работы может повлечь за собой повреждение электродвигателя.
На мощных тепловых электростанциях в качестве привода для дымососов, дутьевых вентиляторов и циркуляционных насосов получили широкое распространение двухскоростные асинхронные электродвигатели напряжением 6 кВ. Эти электродвигатели выполняются с двумя независимыми статорными обмотками, каждая из которых подключается через отдельный выключатель, причем обе статорные обмотки одновременно не могут быть включены, для чего в схемах управления предусмотрена специальная блокировка. Применение таких электродвигателей позволяет экономить электроэнергию путем изменения их частоты вращения в зависимости от нагрузки агрегата. На таких электродвигателях устанавливается по два комплекта релейной защиты.
В эксплуатации применяются также схемы электропривода, предусматривающие вращение механизма (например, шаровой мельницы) двумя спаренными электродвигателями, которые присоединяются к одному выключателю. При этом все защиты являются общими для обоих электродвигателей, за исключением токовой защиты нулевой последовательности, которая предусматривается для каждого электродвигателя и выполняется с помощью токовых реле, подключенных к ТТ нулевой последовательности, установленным на каждом кабеле.
2.Защита асинхронных ЭД от междуфазных к.з., перегрузок и замыканий на землю.
Для защиты от многофазных КЗ электродвигателей мощностью до 5000 кВт обычно используется максимальная токовая отсечка. Наиболее просто токовую отсечку можно выполнить с реле прямого действия, встроенными в привод выключателя. С реле косвенною действия применяется одна из двух схем соединения ТТ и реле, приведенных на рис. 6.2 и 6.3. Отсечка выполняется с независимыми токовыми реле. Использование токовых реле с зависимой характеристикой (рис. 6 3) позволяет обеспечить с помощью одних и тех же реле защиту от КЗ и перегрузки. Ток срабатывания отсечки выбирается -по следующему выражению:
где kсх — коэффициент схемы, равный 1 для схемы на рис. 6.3 и v3 для схемы на рис. 6.2; Iпуск —пусковой ток электродвигателя.
Если ток срабатывания реле отстроен от пускового тока, отсечка, как правило, надежно отстроена и от. тока, который электродвигатель посылает в сечь при внешнем КЗ.
Зная номинальный ток электродвигателя Iном и кратность пускового тока kп, указываемую в каталогах, можно подсчитать пусковой ток по следующему выражению:
Рис. 6.2 Схема защиты электродвигателя токовой отсечкой с одним токовым реле мгновенного действия: а — цепи тока, б — цепи оперативного постоянного тока
Как видно по осциллограмме, приведенной на рис. 6.4, на которой показан пусковой ток электродвигателя питательного насоса, в первый момент пуска появляется кратковременный пик намагничивающего тока, превышающий пусковой ток электродвигателя. Для отстройки от этого пика ток срабатывания отсечки выбирается с учетом коэффициента надежности: kн=1,8 для реле типа РТ-40, действующих через промежуточное реле; kн = 2 для реле типов ИТ-82, ИТ-84 (РТ-82, РТ-84), а также для реле прямого действия.
Рис. 6.3. Схема защиты электродвигателя от коротких замыканий и перегрузки с двумя реле типа РТ-84: а— цепи тока, б — цепи оперативного постоянного тока.
Т
Рис. 6 4. Осциллограмма пускового тока электродвигателя.
Токовую отсечку электродвигателей мощностью до 2000 кВт следует выполнять, как правило, по наиболее простой и дешевой однорелейной схеме (см. рис. 6.2). Однако недостатком этой схемы является более низкая чувствительность по сравнению с отсечкой, выполненной по схеме на рис. 6.3, к двухфазным КЗ между одной из фаз, на которых установлен ТТ, и фазой без ТТ. Это имеет место, так как ток срабатывания отсечки, выполненной по однорелейной схеме, согласно (6.1) в vЗ раз больше, чем в двухрелейной схеме.
Поэтому на электродвигателях мощностью 2000—5000 кВт токовая отсечка для повышения чувствительности выполняется двухрелейной. Двухрелейную схему отсечки следует также применять на электродвигателях мощностью до 2000 кВт, если коэффициент чувствительности однорелейной схемы при двухфазном КЗ на выводах электродвигателя меньше двух.
На электродвигателях мощностью 5000 кВт и более устанавливается продольная дифференциальная защита, обеспечивающая более высокую чувствительность к КЗ на выводах и в обмотках электродвигателей. Эта защита выполняется в двухфазном или в трехфазном исполнении с реле типа РНТ-565 (аналогично защите генераторов). Ток срабатывания рекомендуется принимать 2Iном.
Поскольку защита в двухфазном исполнении не реагирует на двойные замыкания на землю, одно из которых возникает в обмотке электродвигателя на фазе В, в которой отсутствует ТТ, дополнительно устанавливается специальная защита от двойных замыканий без выдержки времени.
Защита от перегрузки
Защита от перегрузки устанавливается только на электродвигателях, подверженных технологическим перегрузкам (мельничных вентиляторов, дымососов, мельниц, дробилок, багерных насосов и т. п.), как правило, с действием на сигнал или разгрузку механизма. Так, например, на электродвигателях шахтных мельниц защита может действовать на отключение электродвигателя механизма, подающего уголь, благодаря чему предотвращается завал мельницы углем.
Защита от перегрузки должна отключать электродвигатель, на котором она установлена, только в том случае, если без остановки электродвигателя нельзя устранить причину, вызвавшую перегрузку. Использование защиты от перегрузки с действием на отключение целесообразно также в установках без обслуживающего персонала.
Ток срабатывания защиты от перегрузки принимается равным:
где kн = 1,1—1,2.
При этом реле защиты от перегрузки смогут сработать от пускового тока, поэтому выдержка времени защиты принимается 10—20 с по условию отстройки от времени пуска электродвигателя. Защита от перегрузки выполняется с помощью индукционного элемента реле типа ИТ-80 (РТ-80) (см. рис 6.3). Если электродвигатель при перегрузках должен отключаться, в схеме защиты используются реле типа ИТ-82 (РТ-82). На электродвигателях, защита которых от перегрузки не должна действовать на отключение, целесообразно использовать реле с двумя парами контактов типа ИТ-84 (РТ-84), обеспечивающие раздельное действие отсечки и индукционного элемента.
Для ряда электродвигателей (дымососов, дутьевых вентиляторов, мельниц), время разворота которых составляет 30—35 с, схема защиты от перегрузки с реле РТ-84 дополняется реле времени типа ЭВ-144, которое приходит в действие после замыкания контакта токового реле. При этом выдержка времени защиты может быть увеличена до 36 с. В последнее время для защиты от перегрузки электродвигателей собственных нужд применяется схема защиты с одним реле тока типа РТ-40 и одним реле времени типа ЭВ-144, а для электродвигателей с временем пуска более 20 с — реле времени типа ВЛ-34 (со шкалой 1—100 с).
3.Защита минимального напряжения.
После отключения КЗ происходит самозапуск электродвигателей, подключенных к секции или системе шин, на которых во время КЗ имело место снижение напряжения. Токи самозапуска, в несколько раз превышающие номинальные, проходят по питающим линиям (или трансформаторам) собственных нужд. В результате напряжение на шинах собственных нужд, а следовательно, и на электродвигателях понижается настолько, что вращающий момент на валу электродвигателя может оказаться недостаточным для его разворота. Самозапуск электродвигателей может не произойти, если напряжение на шинах окажется ниже 55—65 % Iном.
Для того чтобы обеспечить самозапуск наиболее ответственных электродвигателей, устанавливается защита минимального напряжения, отключающая неответственные электродвигатели, отсутствие которых в течение некоторого времени не отразится на производственном процессе. При этом уменьшается суммарный ток самозапуска и повышается напряжение на шинах собственных нужд, благодаря чему обеспечивается самозапуск ответственных электродвигателей.
В некоторых случаях при длительном отсутствии напряжения защита минимального напряжения отключает и ответственные электродвигатели. Это необходимо, в частности, для пуска схемы АВР электродвигателей, а также по технологии производства. Так, например, в случае остановки всех дымососов необходимо отключить мельничные и дутьевые вентиляторы и питатели пыли; в случае остановки дутьевых вентиляторов — мельничные вентиляторы и питатели пыли. Отключение ответственных электродвигателей защитой минимального напряжения производится также в тех случаях, когда их самозапуск недопустим по условиям техники безопасности или из-за опасности повреждения приводимых механизмов.
Наиболее просто защиту минимального напряжения можно выполнить с одним реле напряжения, включенным на междуфазное напряжение. Однако такое выполнение защиты ненадежно, так как при обрывах в цепях напряжения возможно ложное отключение электродвигателей. Поэтому однорелейная схема защиты применяется только при использовании реле прямого действия.
Для предотвращения ложного срабатывания защиты при нарушении цепей напряжения применяются специальные схемы включения реле напряжения. Одна из таких схем для четырех электродвигателей, разработанная в Тяжпромэлектропроекте, показана на рис. 6.5. Реле минимального напряжения прямого действия КVТ1—KVT4 включены на междуфазные напряжения ab и bс. Для повышения надежности защиты эти реле питаются отдельно от приборов и счетчиков, которые подключены к цепям напряжения через трехфазный автоматический выключатель SF3 с мгновенным электромагнитным расцепителем (использованы две фазы автоматического выключателя).
Фаза В цепей напряжения заземлена не глухо, а через пробивной предохранитель FV, чю исключает возможность однофазных КЗ в цепях напряжения и также повышает надежность защиты. В фазе А защиты установлен однофазный автоматический выключатель SFI с электромагнитным мгновенным расцепителем, а в фазе С — автоматический выключатель с замедленным тепловым расцепителем. Между фазами А и С включен конденсатор С емкостью порядка 30 мкФ, назначение которого указано ниже.
Рис. 6 5. Схема защиты минимального напряжения с реле прямого действия типа РНВ
При повреждениях в цепях напряжения рассматриваемая защита будет вести себя следующим образом. Замыкание одной из фаз на землю, как уже отмечалось выше, не приводит к отключению автоматических выключателей, так как цепи напряжения не имеют глухого заземления.
При двухфазном КЗ фаз В и С отключится только автоматический выключатель SF2 фазы С. Реле напряжения KVT1 и KVT2 остаются при этом подключенными к нормальному напряжению и поэтому не запускаются. РелеKVT3 и KVT4, запустившиеся при КЗ в цепях напряжения, после отключения автоматического выключателя SF2 вновь подтянутся, так как на них будет подано напряжение от фазы А через конденсатор С. При КЗ фаз АВ илиАС отключится автоматический выключатель SF1, установленный в фазе А. После отключения КЗ реле KVT1 и KVT2 вновь подтянутся под действием напряжения от фазы С, поступающего через конденсатор С. Реле KVT3и KVT4 не запустятся. Аналогично будут вести себя реле и при обрыве фаз А и С.
Таким образом, рассматриваемая схема защиты не работает ложно при наиболее вероятных повреждениях цепей напряжения. Ложная работа защиты возможна только при маловероятных повреждениях цепей напряжения — трехфазном КЗ или при отключении автоматических выключателей SF1 и SF2.
Сигнализация неисправности цепей напряжения осуществляется контактами реле KV1.1, KV2.1, KV3.1 и контактами автоматических выключателей SF1.1, SF2.1, SF3.1.
В установках с постоянным оперативным током защита минимального напряжения выполняется для каждой секции сборных шин собственных нужд по схеме, приведенной на рис. 6.6. В цепи реле времени КТ1, действующего на отключение неответственных электродвигателей, включены последовательно контакты трех минимальных реле напряжения KV1. Благодаря такому включению реле предотвращается ложное срабатывание защиты при перегорании любого предохранителя в цепях трансформатора напряжения. Напряжение срабатывания реле KV1 принимается порядка 70 % Uном.
Рис. 6.6. Схема защиты минимального напряжения на постоянном оперативном токе: а — цепи переменного напряжения; б — оперативные цепи I — на отключение неответственных двигателей; II — на отключение ответственных двигателей.
Выдержка времени защиты на отключение неответственных электродвигателей отстраивается от отсечек электродвигателей и устанавливается равной 0,5—1,5 с. Выдержка времени на отключение ответственных электродвигателей принимается 10—15 с, для того чтобы защита не действовала на их отключение при снижениях напряжения, вызванных КЗ и самозапуском электродвигателей.
Как показывает опыт эксплуатации, в ряде случаев самозапуск электродвигателей продолжается 20—25 с при снижении напряжения на шинах собственных нужд до 60—70 %Uном. При этом, если не принять дополнительных мер, защита минимального напряжения (реле KV1), имеющая уставку срабатывания (0,6—0,7) Uном, могла бы доработать и отключить ответственные электродвигатели. Для предотвращения этого в цепи обмотки реле времени КТ2, действующего на отключение ответственных электродвигателей, включается контакт KV2.1 четвертого реле напряжения KV2. Это минимальное реле напряжения имеет уставку срабатывания порядка (0,4—0,5)Uном и надежно возвращается во время самозапуска. Реле KV2 будет длительно держать замкнутым свой контакт только при полном снятии напряжения с шин собственных нужд. В тех случаях, когда длительность самозапуска меньше выдержки времени реле КТ2, реле KV2 не устанавливается.
В последнее время на электростанциях применяется другая схема защиты, показанная на рис. 6.7. В этой схеме используются три пусковых реле: реле напряжения обратной последовательности KV1 типа РНФ-1М и реле минимального напряжения KV2 и KV3 типа РН-54/160.
Рис. 6.7. Схема защиты минимального напряжения с реле напряжения прямой последовательности: а — цепи напряжения; б — оперативные цепи
В нормальном режиме, когда междуфазные напряжения симметричны, размыкающий контакт KV1.1 в цепи обмоток реле времени защиты КТ1 и КТ2 замкнут, а замыкающий KV1.2 в цепи сигнализации разомкнут. Размыкающие контакты реле K.V2.1 и KV3.1 при этом разомкнуты.
При снижении напряжения на всех фазах контакт KV1.1 останется замкнутым и поочередно подействуют: первая ступень защиты минимального напряжения, которая осуществляется с помощью реле KV2 (уставка срабатывания 0,7Uном) и КТ1; вторая — с помощью реле KV3 (уставка срабатывания 0,5 Uном) и КТ2. В случае нарушения одной или двух фаз цепей напряжения срабатывает реле KV1, замыкающим контактом которогоKV1.2 подается сигнал о неисправности цепей напряжения.
При срабатывании каждой ступени защиты подается плюс на шинки ШМН1 и ШМН2 соответственно, откуда он поступает на цепи отключения электродвигателей. Действие защиты сигнализируется указательными реле КН1 иКН2, имеющими обмотки параллельного включения.
