
- •18. Емкость р-n-перехода
- •19.Виды пробоя
- •20. Классификация диодов.
- •21.Диоды выпрямительные, выскочастотные,импульсные
- •22. Стабилитроны и ограничители напряжения
- •24. Компоненты оптоэлетроники
- •25.Светодиоды.Фотодиоды.
- •26,27. Режим работы биполярного транзистора и основные физические процессы
- •28.Схемы включения биполярного транзистора
24. Компоненты оптоэлетроники
Оптоэлектроникой называют научно-техническое направление, в котором для передачи, обработки и хранения информации используются электрические и оптические средства и методы.
В оптоэлектронике световой луч выполняет те же функции управления, преобразования и связи, что и электрический сигнал в электрических цепях. Оптоэлектронные устройства имеют широкую полосу пропускания и преобразования сигналов, большое быстродействие и высокую информационную емкость оптических каналов связи .В связи с тем что в оптической цепи носителями заряда являются электрически нейтральные фотоны, которые в световом потоке не взаимодействуют между собой, не смешиваются и не рассеиваются, на подобные цепи практически не влияют всевозможные помехи, вызванные электрическими и магнитными полями. В электронных и электрических цепях, где носителями заряда являются электроны, имеющие определенный электрический заряд, всегда наблюдается «взаимодействие» носителей заряда с электрическими и магнитными полями, «следствие чего информационные сигналы искажаются.
К недостаткам оптоэлектронных компонентов относятся: плохая временная и температурная стабильность характеристик; большая потребляемая электрическая мощность; тожности изготовления универсальных устройств для обработки информации; меньшие функциональные возможности по сравнению с интегральными микросхемами; жесткие требования к технологии изготовления.
25.Светодиоды.Фотодиоды.
Светодио́д или светоизлучающий диод — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра. Его спектральные характеристики зависят во многом от химического состава использованных в нём полупроводников. Иными словами, кристалл светодиода излучает конкретный цвет.
По сравнению с другими электрическими источниками света (преобразователями электроэнергии в электромагнитное излучение видимого диапазона), светодиоды имеют следующие отличия:
-Высокая световая отдача.
-Высокая механическая прочность, вибростойкость (отсутствие нити накаливания и иных чувствительных составляющих).
-Длительный срок службы
-Спектр современных светодиодов бывает различным - от тёплого белого = 2700 К до холодного белого = 6500 К.
-Малая инерционность - включаются сразу на полную яркость
Фотодио́д — приёмник оптического излучения[1], который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.
Фотодиод, работа которого основана на фотовольтаическом эффекте (разделение электронов и дырок в p- и n- области, за счёт чего образуется заряд и ЭДС), называется солнечным элементом.
Особенности:
простота технологии изготовления и структуры
сочетание высокой фоточувствительности и быстродействия
малое сопротивление базы
малая инерционность
26,27. Режим работы биполярного транзистора и основные физические процессы
В зависимости от сочетания знаков и значений напряжений на p-n-переходах транзистора различают следующие режимы его работы:
а) активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный переход – обратное;
б) режим отсечки – на оба перехода поданы обратные напряжения (транзистор заперт);
в) режим насыщения – на оба перехода поданы прямые напряжения (транзистор полностью открыт);
г) инверсный активный режим – напряжение на эмиттерном переходе обратное, на коллекторном – прямое.
Режимы отсечки и насыщения характерны для работы транзистора в качестве электронного ключа; активный режим используют при работе транзистора в усилителях. Инверсное включение используется редко, например, в схемах двунаправленных переключателей, при этом транзисторы должны иметь симметричные свойства в обоих направлениях.
В режиме отсечки оба перехода заперты, через них проходят незначительные обратные токи, что эквивалентно большому сопротивлению переходов. В первом приближении можно считать, что все токи равны нулю, а между выводами транзистора имеет место разрыв. В режиме насыщения через оба перехода проходит большой прямой ток.
Более сложная картина токов в транзисторе наблюдается при разных полярностях напряжений на переходах, т.е. в активном режиме.
Через смещенный в прямом направлении эмиттерный переход проходит достаточно большой прямой ток, обусловленный движением основных носителей заряда (в данном случае – электронов). Электроны пролетают через p-n-переход и инжектируются (впрыскиваются) в область базы; при этом дырки из области базы проходят через переход в эмиттер (для них p-n-переход также смещен в прямом направлении). Но поскольку эмиттер имеет большую концентрацию примесей, то поток электронов из эмиттера в базу намного сильнее потока дырок из базы в эмиттер. Именно электронный поток и является главным действующим лицом в транзисторе типа n -p-n (аналогично дырки–в транзисторе типа p-n-р).
Из-за диффузии и дрейфа (в дрейфовых транзисторах) электроны движутся в сторону коллекторного перехода, стремясь равномерно распределиться в толще базы. Так как база имеет очень малую толщину и малое число дырок, большинство разогнавшихся еще в эмиттере электронов не успевает рекомбинировать в базе, они достигают коллекторного p-n-перехода, где для них, как для неосновных носителей в области базы, обратное напряжение перехода не является барьером, и уже в коллекторе электроны попадают под притягивающее действие приложенного внешнего напряжения, образуя во внешней цепи коллекторный ток IК .
В результате рекомбинации части электронов с дырками базы образуется ток базы IБ, направленный в противоположную от коллектора сторону, и коллекторный ток оказывается несколько меньше эмиттерного. Через коллектор также течет обратный ток неосновных носителей – дырок, вызванный обратным смещением коллекторного перехода.