Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kollokvium_2.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
367.1 Кб
Скачать

17) Движение заряженных частиц в магнитном поле влекущих под углом (не равное 90 градусов) к вектору магнитной индукции

Если скорость v заряженной частицы направлена под углом a к вектору В, то ее движение можно представить в виде суперпозиции: 1) равномерного прямолинейного движения вдоль поля со скоростью v||=vcosa ; 2) равномерного движения со скоростью v^=vsina по окружности в плоскости, перпендикулярной полю. Радиус окружности определяется формулой (в данном случае надо заменить v на v^=vsina). В результате сложения обоих движений возникает движение по спирали, ось которой параллельна магнитному полю (рис. 170). Шаг винтовой линии Подставив в последнее выражение получим Направление, в котором закручивается спираль, зависит от знака заряда частицы.

Если скорость v заряженной частицы составляет угол a с направлением вектора В неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, то r и h уменьшаются с ростом В. На этом основана фокусировка заряженных частиц в магнитном поле.

18) Уравнения максвелла

Максвелла уравнения в интегральной форме определяют по заданным зарядам и токам не сами векторы поля Е, В, D, Н в отдельных точках пространства, а некоторые интегральные величины, зависящие от распределения этих характеристик поля: циркуляцию векторов Е и Н вдоль произвольных замкнутых контуров и потоки векторов D и B через произвольные замкнутые поверхности.

Первое Максвелла уравнения является обобщением на переменные поля эмпирического Ампера закона о возбуждении магнитного поля электрическими токами. Первое Максвелла уравнения имеет вид:

физический смысл первого уравнения Максвелла состоит в том, что магнитное поле в некоторой области пространства связано не только с токами проводимости, протекающими в этой области, но и с изменением электрического поля во времени в этой области(токами смещения).

Второе Максвелла уравнения является математической формулировкой закона электромагнитной индукции Фарадея (см. Индукция электромагнитная) записывается в виде:

то есть циркуляция вектора напряжённости электрического поля вдоль замкнутого контура L (эдс индукции) определяется скоростью изменения потока вектора магнитной индукции через поверхность S, ограниченную данным контуром. Здесь Bn — проекция на нормаль к площадке ds вектора магнитной индукции В; знак минус соответствует Ленца правилу для направления индукционного тока.

Третье Максвелла уравнения выражает опытные данные об отсутствии магнитных зарядов, аналогичных электрическим (магнитное поле порождается только токами): ,то есть поток вектора магнитной индукции через произвольную замкнутую поверхность S равен нулю.

Четвёртое Максвелла уравнения (обычно называемое Гаусса теоремой) представляет собой обобщение закона взаимодействия неподвижных электрических зарядов — Кулона закона:

то есть поток вектора электрической индукции через произвольную замкнутую поверхность S определяется электрическим зарядом, находящимся внутри этой поверхности (в объёме V, ограниченном данной поверхностью).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]