Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gotovye_shpory.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
902.38 Кб
Скачать

24.Адиабатный процесс.

Адиабатный процесс. Адиабатный процесс протекает без теплообмена системы с окружающей средой, система не получает теплоты извне и не отдает ее. Условие протекания адиабатного процесса dq=0. Уравнения первого закона термодинамики при dq=0 имеют вид и откуда получаем ; . Разделив почленно второе уравнение на превое: , или . После разделения переменных получим , после интегрирования – (1). Или для процесса 1-2 . Уравнение (1) является уравнением адиабатного процесса. При его выводе предполагалось, что являются постоянными величинами. Элементарная удельная работа изменения объема в адиабатном процессе определяется по формуле , откуда . Умножив и разделив правую часть выражения (2) на , получим , или . Из первого закона термодинамики следует, что при . Работа изменения объема в адиабатном процессе осуществляется за счет внутренней энергии системы: при совершении работы расширения внутренняя энергия газа и температура уменьшаются, при адиабатном сжатии газа внутренняя энергия и температура возрастают.

Полезная внешняя работа . Полезная внешняя работа при адиабатном процессе в k раз больше работы изменения объема. Дифференциал энтропии ds=dq/T, откуда при dq=0 ds=0, s=const.

Равновесный адиабатный процесс является процессом изоэнтропным. Из сравнительного анализа уравнений адиабаты и изотермы следует, что адиабата круче изотермы на диаграмме p-v.

25.Политpoпные процессы.

Политропный процесс. Политропный процесс проходит при постоянной тепло­емкости ( ). Коэф­фициент 𝜁 в политропном процессе имеет определенное постоянное число­вое значение. Элемен­тарное количество теплоты для любого политропного процесса где — удельная теплоемкость при политропном процессе, или для процесса 1—2 . Выведем уравнение политропного процесса. Из первого закона термодинамики имеем: откуда Введя обозначение получаем Интегрируем полученное выражение для процесса 1—2: после потенцирования получаем уравнение политропного процесса. Величина п называется показателем политропы, который может принимать значения от . Удельная работа изменения объема в политропном процессе Удельная полезная внешняя работа определяется по следующей формуле: Изменение внутренней энергии и энтальпии в политропном процессе и =const, Изменение внутренней энергии и энтальпии в политропном процессе пропорционально приращению температуры. Для практических расчетов необходимо знать значение показателя политропы п. Один из методов определения п заключается в логарифмировании уравнения политропы для двух характерных точек 1 и 2: откуда показатель политропы Основные термодинамические процессы являются частными случаями политропных процессов (при имеем изохорный процесс, n=0 изобарный, n=1 изотермический,n=k адиабатный).

Значение показателя политропы п определяет характер протекания политропного процесса. Процессы с подводом теплоты и увеличением энтропии располагаются в областях I—III, VIII, с отводом теплоты от системы и уменьшением энтропии -в областях IV—VII. В областях VII, VIII, I и II термодинамические процессы идут с повышением температуры рабочего тела, в остальных областях — с ее понижением. В области III протекают процессы с подводом тепла и понижением температуры, в области VI — с отводом тепла и повышением температуры.

На диаграмме р-v правее, а на диаграмме Т—s выше изотермы процессы идут с увеличением внутренней энергии, в остальных областях — с уменьшением внутренней энергии рабочего тела

26. Уравнение первого закона термодинамики для потока.

Первый закон термодинамики для потока

На практике при рассмотрении рабочих процессов машин, аппаратов и устройств, встречаются задачи изучении закономерностей движения рабочих тел (газов, пара и жидкостей).

Уравнение 1-го закона термодинамики для потока газа при следующих допущениях:

движение газа по каналу установившееся и неразрывное;

скорости по сечению, перпендикулярному оси канала, постоянны;

пренебрегается трение частичек газа друг другу и о стенки канала;

изменение параметров по сечению канала мало по сравнению их абсолютными значениями,

имеет вид:

q = Du + De + lпрот. + lтехн. , (5.1)

где De = (w22 – w21)/2 + g·(z2 –z1) – изменение энергии системы,

состоящий из изменения кинетической и потенциальной энергий;

w1 ,w2 – скорости потока в начале и в конце канала;

z1 , z2 – высота положения начала и конца канала.

lпрот. = P2·n 2 – P1·n 1– работа проталкивания, затрачиваемая на движения потока;

lтехн. – техническая (полезная) работа (турбины, компрессора, насоса, вентилятора и т.д.).

q = (u2 – u1) + (w22 – w21)/2 + g·(z2 –z1) + P2·n 2 – P1·n 1 + lтехн. (5.2)

Введем понятия энтальпии, который обозначим через величину:

h = u + Pх , (5.3)

h2 = u2 + P2·n 2 ; h1 = u1 + P1·n 1 . (5.4)

Тогда уравнение 1-го закона термодинамики для потока газа будет иметь вид:

q = h2 – h1 + (w22 – w21)/2 + g·(z2 –z1) + lтехн. (5.5)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]