Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
40
Добавлен:
20.05.2014
Размер:
1.28 Mб
Скачать

7.3. Теория дилатансии

Теория, способная объяснить некоторые из предвестников, основана на лабораторных опытах с образцами горных пород при очень высоких давлениях. Известная под названием “теория дилатансии”, она впервые была выдвинута в 1960-х годах У.Брейсом из Массачусетского технологического института и развита в 1972 году А.М. Нуром из Станфордского университета. В этой теории дилатансия обозначает увеличение объема горной породы при деформации. Когда происходят движения земной коры, в породах растут напряжения и образуются микроскопические трещины. Эти трещины меняют физические свойства пород, например, уменьшаются скорости сейсмических волн, увеличивается объем породы, меняется электросопротивление (возрастает в сухих породах и уменьшается во влажных). Далее, по мере того, как в трещины проникает вода, они уже не могут схлопываться; следовательно, породы увеличиваются в объеме, и поверхность Земли может подняться. В результате вода распространяется по всей расширяющейся зане, повышая поровое давление в трещинах и снижая прочность пород. Эти изменения могут привести к землетрясению. Землетрясение высвобождает накопленные напряжения, вода выдавливается из пор, и многие из прежних свойств пород восстанавливаются.

7.4. Методы прогноза землетрясений

7.4.1. Модели подготовки землетрясений

Современные модели подготовки землетрясений построены на основании сопоставления опыта лабораторного моделирования и результатов полевых наблюдений сейсмичности. Теоретическую основу составляют представления механики и физики разрушения материалов и горных пород. Акт землетрясения рассматривается как итог долговременной эволюции трещинообразования в земле. В разных моделях уделяется различное внимание масштабу рассматриваемых геологических разрывов – трещин, их расположению в пространстве, дополнительным физико-механическим факторам, влияющим на протекание процесса трещинообразования. Здесь описываются только наиболее разработанные модели, претендующие на объяснение природы предвестников.

Модель лавинно-неустойчивого трещинообразования (ЛНТ)

Модель создана специалистами института “Физика Земли”. Суть модели состоит в том, что различные стадии образования трещин (разных масштабов), сопровождаемые изменениями скорости деформирования в очаговой области и вне ее, неизбежно ведут к изменениям физических свойств среды. Отражается это и в вариациях сейсмического режима, т.е. изменениях числа слабых землетрясений, их величины и пространственного расположения.

Одна из таких ситуаций недавно проверялась Г.А.Соболевым в лаборатории на простой модели землетрясения, развивающегося в условиях долговременного сейсмического затишья. На множестве образцов размером от десятков сантиметров до нескольких метров были прослежены все этапы образования трещин и установлены три главные стадии подготовки микроземлетрясения.

На первой стадии постепенно накапливались трещины, размер которых на несколько порядков меньше главного разрыва. Затем мелкие разрывы объединялись в более крупные. Н а заключительной стадии образование разрывов лавинообразно нарастало, причем все они локализовались в области будущего главного разрыва. Характерно, что даже в такой упрощенной модели удалось выделить периоды повышения сейсмической активности и затишья, аналогичные наблюдающимся перед реальными землетрясениями.

Эксперименты подтвердили справедливость основных положений модели ЛНТ. В частности, было доказано, что изменения поля упругих деформаций и сейсмического режима можно рассматривать как долгосрочные предвестники. Однако в рамках данной модели пока не удалось обнаружить надежные краткосрочные предвестники.

На объяснение природы долгосрочных предвестников претендует и гипотеза подготовки землетрясения за счет уплотнения вещества, предложенная И.П.Добровольским. Последняя стадия процесса подготовки объясняется в ней все тем же лавинно-неустойчивым трещинообразованием.

Дилатантно-диффузионная (ДД) модель

Модель ДД разработана американскими учеными. В ней проявление предвестников объясняется поступлением воды в очаговую зону будущего землетрясения, после того как из-за резкого роста тектонических напряжений там начинается массовое образование микротрещин. В последнее время эта модель дополнена количественными оценками. Рассматривая вариант так называемого мягкого включения, Дж. Райс показал, что состояние динамической (сейсмической) неустойчивости в реальном массиве пород должно наступать с запаздыванием, так как изменяется внутрипоровое давление и начинается фильтрация жидкости. Если исходить из предполагаемой скорости увеличения механических напряжений в сейсмоопасном районе, равной 1кг/ кв см в год, то расчетное время “запаздывания” землетрясения по сравнению с началом фильтрации воды в очаговую зону должно составлять несколько месяцев, т.е. этот эффект приложим только к долгосрочным и среднесрочным предвестникам. Вопрос о природе краткосрочных предвестников в рамках данной модели остается открытой.

Модель “крип” - постепенно ускоряющееся движение бортов уже существующего разлома

В разных странах широко развивается гипотеза появления землетрясения за счет крипа – постепенно ускоряющееся движение бортов уже существующего разлома. Классические лабораторные эксперименты в рамка этой гипотезы выполнил в США Дж.Дитрих. Перед подвижкой, рассматриваемой как аналог землетрясения, на лабораторной модели землетрясения последовательно наблюдались два явления. Вначале регистрировался медленный (несколько сантиметров в секунду) крип. Затем вдоль разлома или его части он экспоненциально ускорялся (до десятков и сотен метров в секунду), завершаясь динамической подвижкой и излучением сейсмических волн. Несмотря на привлекательность модели, при объяснении природы краткосрочных предвестников землетрясений она также наталкивается на ряд трудностей. Во-первых, остаются непонятными большой ареал распространения таких предвестников, а также обширность области их генерации. Во-вторых, даже в районе разлома Сан-Андрес в Калифорнии, где данная модель работает наилучшим образом, перед большинством землетрясений зарегистрировать краткосрочные предвестники не удалось. Возможно, это объясняется малой областью развития крипа, предшествующего неустойчивому распространению разрыва. В таком случае обнаружить предварительную миграцию крипа как краткосрочный предвестник принципиально возможно, но практически трудно выполнимо.

Можно привести еще много моделей подготовки землетрясений, таких как: модель консолидации, модель неустойчивого скольжения, модель фазовых превращений и др., но при их детальном рассмотрении оказывается, что достоинства модели перекрываются ее недостатками.

Все рассмотренные выше модели основаны на попытке воспроизвести изучаемый процесс, происходящий в природе, на модели. Но при моделировании землетрясений в лабораторных условиях следует, строго говоря, соблюсти условия подобия процессов в натуре и модели. Горные породы же в лабораторном эксперименте не могут моделировать самих себя в естественных условиях. Кроме того, бесполезно моделировать все свойства естественного процесса в одном опыте.

В лаборатории мы выбираем модель линейного развития процесса, но в природе не существует чисто линейных процессов. Помимо этого, для моделирования в лаборатории надо знать начальные параметры изучаемого процесса, а их определение с необходимой точностью невозможно, но даже исследование этого дает поведение системы только в определенных условиях. А значит, моделирование не дает возможности прогнозировать исследуемый процесс. В настоящее время моделирование не всегда приводит к желаемым результатам, но возможно, со временем, придет новое понятие поведения этой системы, и ученые добьются желаемого результата.

7.4.2. Алгоритм КН - ретроспективный анализ

Алгоритм КН предложен для среднесрочного прогноза землетрясений, т.е. прогноза, в котором тревога объявляется на несколько лет. Алгоритм КН был разработан около 20 лет назад путем ретроспективного анализа каталогов землетрясений Калифорнии и Невады., отсюда и его название. Он принадлежит к семейству алгоритмов, основанных на анализе характерных особенностей, возникающих в общем потоке землетрясений перед сильным землетрясением.

Качественное описание алгоритма КН. Сильное землетрясение определяется условием М>Мо, где М-магнитуда, а Мовыбирается так, чтобы средний интервал времени между сильным землетрясением в исследуемом регионе был достаточно большим, практически 7-10 лет. Тревога объявляется, если группирование землетрясений велико, сейсмическая активность высока и продолжает расти, и рост сейсмической активности предварялся затишьем.

Результаты испытаний алгоритма КН на независимом материале следующий: за рассмотренный период времени в исследованных регионах произошло 29 сильных землетрясений, диагностированы 23 из них; средняя продолжительность тревоги на сильное землетрясение – 1,8 года

7.4.3. Сейсмическое районирование

Основными понятиями, связанными с социально-экономическими последствиями землетрясений, являются следующие.

Сейсмическое районирование - это картирование сейсмической опасности.Сейсмическая опасность - вероятность возникновения (превышения, не превышения) сейсмическогоэффекта определенной величины в данном пункте в течение заданного интервала времени (измеряется вбаллах, пиковых и спектральных ускорениях и т.п.).

Сейсмическая уязвимость - отношение ожидаемых затрат по восстановлению объекта к его первоначальной стоимости (измеряется от 0.0 до 1.0).

Сейсмическое районирование актуально для всех без исключения регионов России, где даже на относительно спокойных в геологическом отношении равнинных территориях имели место, и возможны в будущем, достаточно сильные и разрушительные землетрясения. Свыше четверти территории Российской Федерации подвержено сейсмическим воздействиям, требующим проведения антисейсмических мероприятий. Значительную площадь занимают чрезвычайно опасные в сейсмическом отношении 8-9-ти и 9-10-балльные зоны. К ним относятся Дальний Восток и весь юг Сибири. В европейской части страны таким регионом является Северный Кавказ. Ощутимые и 6-7-балльные землетрясения свойственны Среднему Уралу иПриуралью, Поволжью, Кольскому полуострову и сопредельной с ним территории. Техногеннаясейсмотектоническая активизация характерна для нефтедобывающих районов Татарстана и Башкортостана.

Известны местные землетрясения и в Воронежской области, где расположена Ново-Воронежская АЭС. Угроза землетрясений с каждым годом растет по мере освоения сейсмоактивных территорий и строительства в их пределах особо ответственных сооружений.

Исследования в области сейсмического районирования базируются на детальном и комплексном изучении глубинной структуры земной коры и всей литосферы, современной геодинамики, региональной сейсмичности, сейсмотектоники и инженерной сейсмологии. Они включают в себя идентификацию сейсмоактивных структур, определение параметров их сейсмического режима и затухания генерируемого ими сейсмического эффекта с расстоянием, а в итоге - вероятностный расчет и картирование сейсмической опасности на земной поверхности. В зависимости от задач, степени детальности и масштаба исследований сейсмическое районирование может быть общим (ОСР-общее сейсмическое районирование, масштаб 1:5-млн - 1:2,5-млн), детальным (ДСР, масштаб 1:500-тыс - 1:100-тыс) и микросейсмическим (СМР, масштаб 1:50-тыс и крупнее). Однако первостепенным и опорным для всех последующих построений является ОСР, основанное на региональных и межрегиональных сейсмологических и геолого-геофизических исследованиях, способствующих выявлению планетарных сейсмогеодинамических взаимодействий литосферных плит и блоков земной корысейсмоактивных регионов.

Карты ОСР в генерализованном виде характеризуют степень сейсмической опасности всей территории страны и сопредельных сейсмоактивных регионов и используются для социально-экономического планирования, рационального землепользования и сейсмостойкого строительства. Только на их основе могут и должны составляться более детальные картыДСР и СМР, учитывающие наряду с региональными локальные сейсмотектонические, сейсмические, грунтовые и другие природные условия.

Созданный Комплект карт ОСР-97 позволяет оценивать степень сейсмической опасности на трех разных уровнях (А, В, С) в средних грунтовых условиях, характерных для соответствующих регионов. Для территории Российской Федерации этот комплект принят Госстроем России для использования в Строительных нормах и правилах (СНиП) "Строительство в сейсмических районах":

Карта ОСР-97-А- соответствует 90%-ной вероятности не превышения расчетной интенсивности в течение 50 лет (или 10%-ной вероятности превышения) может быть предназначена для массового гражданского и промышленного строительства;

Карта ОСР-97-В- соответствует 95%-ной вероятности не превышения расчетной интенсивности в течение 50 лет (или 5%-ной вероятности превышения) - для объектов повышенной ответственности;

Карта ОСР-97-С - 99%-ной вероятности не превышения расчетной интенсивности в течение 50 лет (или 1%-ной вероятности превышения) - для особо ответственных объектов. (См. примечание1)

Сейсмическое районирование - одна из наиболее сложных и чрезвычайно ответственных проблем современной сейсмологии. О социальной, экономической и экологической её значимости говорить не приходится. Научная же сложность этой проблемы состоит, прежде всего, в том, что она принадлежит к категории прогнозов, базирующихся на неполной информации, скудном и не всегда удачном опыте и на недостаточно четких методологических позициях. Поэтому каждая из составленных в прошлые годы карт сейсмического районирования территории бывшего СССР в той или иной мере оказывалась неадекватной реальным природным условиям, что наряду с некачественным строительством нанесло народному хозяйству огромный материальный ущерб и повлекло за собой многочисленные человеческие жертвы. И хотя по мере накопления дополнительной информации о землетрясениях и совершенствования сейсмологических знаний карты сейсмического районирования обновлялись и несколько улучшались, фрагментарно они изменялись гораздо чаще, практически после каждого крупного землетрясения в районах, показанных на картах как менееопасные в сейсмическом отношении.

Такая участь постигла и действующую с 1978 г. карту ОСР-78: в течение последнего десятилетия практически ежегодно на территории бывшего СССР возникали разрушительные 8-9- и даже 9-10-балльные землетрясения в зонах, опасность которых по этой карте оказалась заниженной по меньшей мере на 2-3 балла. К их числу относятся катастрофическое Спитакское землетрясение 1988 г. в Армении, сопровождавшееся десятками тысяч человеческих жертв, Зайсанское землетрясение 1990 г. - в Казахстане, Рача-Джавское 1991г. - в Грузии, Суусамырское 1992 г. - в Киргизии, Хаилинское 1991 г. и Нефтегорское 1995 г. - в России (в Корякии и на Сахалине). Последнее, произошедшее на севере Сахалина, повлекло за собой гибель около двух тысяч человек и полную ликвидацию городского поселка.

[1,2,5]

  1. Динамика

Сейсмическая опасность с каждым годом не уменьшается, а растет в прямой связи с хозяйственным освоением сейсмоактивных территорий и воздействием человека на литосферную оболочку Земли (строительство водохранилищ, плотин и других крупных гидротехнических сооружений; добыча угля, нефти, природного газа и многих других полезных ископаемых и тому подобные воздействия на земную кору, вызывающие ее внутренние напряжения).

Соседние файлы в папке Землетрясения, сейсмология. Реферат