
- •Взаимосвязь ввп и производства энергии в странах мира.
- •Потребности в энергии и пределы роста энергопотребления.
- •Основные законы преобразования тепла в работу.
- •3. Структура потребления энергии в промышленности и быту.
- •Закономерности экспоненциального роста энергетики.
- •Мировые ресурсы энергии. Пределы роста.
- •Солнечная энергия.
- •Гидроэнергия.
- •Органическое топливо (уголь, нефть, газ).
- •Газотурбинные циклы Брайтона. Тепловая схема и кпд.
- •Ядерная энергия (деление).
- •Кпд преобразования энергии. Цикл Карно. Экономические причины и физические методы повышения кпд циклов.
- •Трубопроводный транспорт нефти и газа. Минимизация приведенных затрат на трубопроводный транспорт (Задача в.Г.Шухова об оптимальном диаметре трубопровода).
- •Танкерный флот. Перспективы атомного флота.
- •Инженерно-физические основы ядерной энергетики.
- •Типы и классификация ядерных реакторов. Конструкция энергетических ядерных реакторов (ввэр, рwr, bwr, candu, рбмк, бм, втгр).
- •Структура ядерного топливного цикла и машиностроительного цикла аэс.
- •Методы добычи урана и структура горноперерабатывающего производства. Особенности экономики добычи и переработки природного урана.
- •Методы разделения изотопов урана. Работа разделения. Стоимость обогащенного и отвального урана.
- •Фабрикация топлива и производство твс.
Солнечная энергия.
Энергетика, основанная на использовании солнечной энергии в широком смысле, часто именуется как «гелиоэнергетика» (от греч. Helios - Солнце).
Использовать огромные ресурсы солнечной энергии пока не удается в больших масштабах. Одним из наиболее серьезных препятствий на этом пути является низкая интенсивность солнечного излучения даже при наилучших атмосферных условиях и непостоянство во времени (день-ночь, ясно-облачно, лето-зима и т.п.). Например, на экваторе интенсивность солнечного излучения в среднем за сутки составляет около 250 Вт/м2 (при максимальном значении около полудня почти 1000 Вт/м2). В то же время в современных парогенераторах ТЭС и АЭС тепловой поток в сотни-тысячи раз выше (0,1 - 1,0 МВт/м2), что обеспечивает относительную компактность и меньшую стоимость оборудования. Поэтому главная проблема крупномасштабного использования энергии Солнца - разработка дешевых и надежных методов концентрации его излучения в сотни раз еще до того, как она превратится в тепло. Достигается это с помощью специальных зеркал (гелиостатов), которые «отслеживают» положение Солнца и фокусируют излучение на поверхность емкости (коллектора), где нагревается теплоноситель, как в топке (парогенераторе) ТЭС (рис. 2.9). Коллектор поднят над поверхностью земли и установлен на высокой башне (до 300 м) для снижения взаимного затенения гелиостатов. Поверхность коллектора снаружи покрывается специальным селективным покрытием, хорошо поглощающим солнечное излучение и сокращающее собственное излучение коллектора («парниковый» эффект). Запасенное тепло преобразуется в электроэнергию с помощью традиционного паротурбинного цикла. Такова принципиальная схема солнечной тепловой электростанции (СТЭС) башенного типа.
В табл. 2.5 приведены некоторые технико-экономические параметры проекта СТЭС электрической мощностью 100 МВт, разработанной для юго-западного пустынного района США. Электростанция получает солнечную энергию всего в течение 6 - 9 часов в зависимости от времени года. В сочетании с тепловым аккумулятором, рассчитанным на 6-часовое действие, возможно обеспечить работу электрогенератора мощностью 100 МВт в течение 8 - 14 часов. При этом для получения 600 МВт тепловой мощности в коллекторе в течение 6 - 9 ч ясного дня необходимо установить коллектор на высоту 330 м. Оптимальный размер зеркал (гелиостатов) 6x6 м2. Они должны автоматически поворачиваться за солнцем так, чтобы в каждый момент времени плотность сфокусированного на коллектор излучения была максимальной.
Оценки показывают, что для электростанции со среднесуточной мощностью 1 ГВт (как на современных блоках ТЭС и АЭС) результирующий КПД не превысит 15 %, а для размещения фокусирующих зеркал потребуется площадь 30 - 50 км2, что сравнимо с площадью крупнейших водохранилищ равнинных ГЭС. По данным [2.11] для строительства такой СТЭС потребуется затратить энергии на добычу и производство материалов для нее больше, чем она выработает за время эксплуатации.
Солнечная теплофикация. Использование солнечной энергии сегодня сводится в основном к производству низкопотенциального тепла (до 200 оС) для горячего водоснабжения, подогрева воды в плавательных бассейнах, дополнительного обогрева или кондиционирования жилищ. Энергию солнца можно аккумулировать днем для обогрева домов и теплиц в ночное время.
Тепловые солнечные коллекторы устанавливают на крышах, обращенных в южную сторону. Они работают по «принципу парника». Это - с одной стороны деревянные, металлические, или пластиковые короба, закрытые с другой стороны одинарным или двойным стеклом. Внутрь короба для максимального поглощения солнечных лучей вставляют волнистый металлический лист, окрашенный в черный цвет. В коробе нагревается воздух или вода, которые периодически или постоянно отбираются оттуда с помощью вентилятора или насоса. Нагретый воздух или воду используют для различных целей. Дневная производительность на широте 50о может достигать 2 кВт-ч с квадратного метра. КПД солнечных коллекторов составляет 40 - 50 %.
Большой объем работ по применению солнечной энергии в этих целях выполнен в США, Германии, Японии, Австралии и ряде других стран. В Израиле в соответствии с законом, требующим, чтобы каждый дом был снабжен солнечной водонагревательной установкой, используется более 800 тыс. солнечных коллекторов, которые производят около 15 млн ГДж тепла и обеспечивают 70 % населения горячей водой [2.4]. В феврале 2000 г. в Германии был принят многообещающий закон по возобновляемой энергетике, в котором главная роль отведена использованию солнечной энергии. Закон вступил в силу 1 апреля 2000 г. и идет как дополнительная поддержка программе «100 000 солнечных крыш», утвержденной 1 января 1999 г. Эта важнейшая программа мирового уровня обеспечена федеральным бюджетом в 1,1 млрд DM. Ее цель - стимулировать инвестиции частных лиц, мелкого и среднего бизнеса в создание энергоисточников на основе возобновляемых источников энергии, соединенных с энергетической сетью. Аналогичные программы принимаются в других странах.