
Химический состав, кристаллическая решетка.
Сера имеет вид желтого порошка или хрупкой кристаллической массы без запаха и вкуса и нерастворима в воде. Для серы характерны несколько аллотропных модификаций. Наиболее известны следующие: кристаллическая сера – ромбическая (самородная сера, -S) и моноклинная (призматическая сера, -S); аморфная – коллоидная (серное молоко) и пластическая; промежуточная аморфно-кристаллическая – сублимированная (серный цвет).
СВОЙСТВА СЕРЫ |
|
Атомный номер |
16 |
Атомная масса |
32,066 |
Изотопы |
|
стабильные |
32, 33, 34, 36 |
нестабильные |
31, 35, 37 |
Температура плавления, ° С |
112,8 ( , ромбич.), 119,0 ( , моноклин.) |
Температура кипения, ° С |
444,6 |
Плотность, г/см3 |
2,06 (ромбич.), 1,957 (моноклин.) |
Твердость (по Моосу) |
1,5–2,5 |
Содержание в земной коре, % (масс.) |
0,052 |
Степени окисления |
–2, +2, +4, +6 (реже –1, 0, +1, +3, +5 ) |
Кристаллическая сера. Кристаллическая сера имеет две модификации; одну из них, ромбическую, получают из раствора серы в сероуглероде (CS2) испарением растворителя при комнатной температуре. При этом образуются ромбовидные просвечивающие кристаллы светложелтого цвета, легко растворимые в CS2. Эта модификация устойчива до 96 С, при более высокой температуре стабильна моноклинная форма. При естественном охлаждении расплавленной серы в цилиндрических тиглях вырастают крупные кристаллы ромбической модификации с искаженной формой (октаэдры, у которых частично «срезаны» углы или грани). Такой материал в промышленности называется комовая сера. Моноклинная модификация серы представляет собой длинные прозрачные темножелтые игольчатые кристаллы, также растворимые в CS2. При охлаждении моноклинной серы ниже 96 С образуется более стабильная желтая ромбическая сера.
Некристаллическая сера. Твердая сера существует также в двух некристаллических, аморфных, формах. Коллоидная сера получается при осаждении серы из раствора (например, при кипячении серы с известью) и фильтровании с последующим добавлением хлороводородной кислоты к прозрачному фильтрату. Осадок представляет собой мелкодисперсную белую и хорошо растворимую в CS2 серу. Коллоидную серу используют в медицине как антисептик, слабительное и противопаразитическое средство в виде порошков и мазей. Другая некристаллическая форма – пластическая сера – образуется при резком охлаждении расплава, например, холодной водой. Пластическая сера бывает темнокрасного или коричневого цвета, она каучукоподобна (плотность 2,046 г/см3) и не растворяется в CS2; при хранении становится хрупкой, желтеет и по мере превращения в ромбическую все лучше растворяется в CS2.
В дополнение к этим кристаллическим и аморфным формам существует промежуточная форма, известная как серный цвет или сублимированная сера, которая получается конденсацией паров серы, минуя жидкую фазу. Она состоит из мельчайших зерен, имеющих центр кристаллизации и аморфную поверхность. Эта форма медленно и не полностью растворяется в CS2. После обработки аммиаком для очистки от таких примесей, как мышьяк, получается продукт, известный в медицине как промытая сера, которая используется аналогично коллоидной сере.
Жидкое состояние. Молекулы серы состоят из замкнутой цепочки восьми атомов (S8). Жидкая сера обладает необычным свойством: с повышением температуры ее вязкость увеличивается. Ниже 160 С сера – типичная жидкость желтоватого цвета, ее состав соответствует формуле S8 и обозначается -S. С повышением температуры кольцевые молекулы S8 начинают разрываться и соединяться друг с другом, образуя длинные цепи (-S), цвет жидкой серы становится темнокрасным, вязкость возрастает, достигая максимума при 200–250 С. При дальнейшем повышении температуры жидкая сера светлеет, длинные цепи рвутся, образуя короткие, с меньшей способностью к переплетению, что приводит к меньшей вязкости.
Газ. Сера кипит при 444,6 C, образуя оранжево-желтые пары, состоящие преимущественно из молекул S8. С повышением температуры окраска паров переходит в темнокрасную, затем в палевую, а при 650 C в соломенно-желтую. При дальнейшем нагревании молекулы S8 диссоциируют, образуя равновесные формы S6, S4 и S2 при разных температурах. И, наконец, при >1000 С пары состоят практически из молекул S2, а при 2000 С – из одноатомных молекул.
Химические свойства. Сера – типичный неметалл. На внешней электронной оболочке у нее шесть электронов, и она легче присоединяет электроны других элементов, чем отдает свои. Со многими металлами реагирует с выделением тепла (например, при соединении с медью, железом, цинком). Она соединяется и почти со всеми неметаллами, хотя не так энергично. [4]
Характерные горные породы.
По происхождению делятся на:
-
Вулканического происхождения. В процессе разложения газов, содержащих сероводород, при высоких температурах в зонах действующих и потухших вулканов (Камчатка, Италия, Япония, Индонезия).
-
Осадочного происхождения. При разложении сульфатов под влиянием органических веществ или анаэробных бактерий, здесь сера ассоциируется с гипсом и целестином (Сицилия, Италия; Штасфурт, Германия; Южная Польша). [2]
Разновидности.
Диоксид серы образуется при сжигании серы на воздухе, в частности, при обжиге сульфидных руд металлов. Диоксид серы – бесцветный газ с удушающим запахом. Это ангидрид сернистой кислоты, он легко растворяется в воде с образованием сернистой кислоты. Диоксид легко сжижается (т. кип. –10 C) и его хранят в стальных цилиндрах. Диоксид используют в производстве серной кислоты, в холодильных установках, для отбеливания текстиля, древесной массы, соломы, свекловичного сахара, для консервации фруктов и овощей, для дезинфекции, в пивоваренных и пищевых производствах.
Сернистая кислота H2SO3 существует только в разбавленных растворах (менее 6%). Это слабая кислота, образующая средние и кислые соли (сульфиты и гидросульфиты). Сернистая кислота – хороший восстановитель, реагируя с кислородом образует серную кислоту. Сернистая кислота находит несколько областей применения, среди которых – обесцвечивание шелка, шерсти, бумаги, древесной массы и аналогичных веществ. Она используется как антисептик и консервант, особенно для предотвращения брожения вина в бочках, для предотвращения ферментации зерна при извлечении крахмала. Кислоту используют и для сохранения продуктов. Наибольшее значение из ее солей имеет гидросульфит кальция Ca(HSO3)2, используемый при переработке древесной щепы в целлюлозу.
Триоксид серы SO3 (серный ангидрид), образующий с водой серную кислоту, представляет собой либо бесцветную жидкость, либо белое кристаллическое вещество (кристаллизуется при 16,8 С; т. кип. 44,7 С). Он образуется при окислении диоксида серы кислородом в присутствии соответствующего катализатора (платина, пентаоксид ванадия). Триоксид серы сильно дымит во влажном воздухе и растворяется в воде, образуя серную кислоту и выделяя много тепла. Его используют в производстве серной кислоты и получении синтетических органических веществ.
Серная кислота H2SO4. Безводная H2SO4 – бесцветная маслянистая жидкость, растворяет SO3, образуя олеум. Смешивается с водой в любых отношениях. При растворении в воде образуются гидраты с выделением очень большого количества теплоты; поэтому во избежание разбрызгивания кислоты обычно при растворении осторожно, постепенно добавляют кислоту в воду, а не наоборот. Концентрированная кислота хорошо поглощает пары воды и поэтому применяется для осушения газов. По этой же причине она приводит к обугливанию органических веществ, особенно углеводов (крахмала, сахара и т.п.). При попадании на кожу вызывает сильные ожоги, пары разъедают слизистую дыхательных путей и глаз. Серная кислота – сильный окислитель. Конц. H2SO4 окисляет HI, HBr до I2 и Br2 соответственно, уголь – до CO2, серу – до SO2, металлы – до сульфатов. Разбавленная кислота тоже окисляет металлы, стоящие в ряду напряжений до водорода. H2SO4 – сильная двухосновная кислота, образующая средние и кислые соли – сульфаты и гидросульфаты; большинство ее солей растворимы в воде, за исключением сульфатов бария, стронция и свинца, малорастворим сульфат кальция. Серная кислота – один из важнейших продуктов химической промышленности (производящей щелочи, кислоты, соли, минеральные удобрения, хлор). Ее получают главным образом контактным или башенным способом по принципиальной схеме:
Большая часть получаемой кислоты идет на производство минеральных удобрений (суперфосфат, сульфат аммония). Серная кислота служит исходным сырьем для получения солей и других кислот, для синтеза органических веществ, искусственных волокон, для очистки керосина, нефтяных масел, бензола, толоуола, при изготовлении красок, травлении черных металлов, в гидрометаллургии урана и некоторых цветных металлов, для получения моющих и лекарственных средств, как электролит в свинцовых аккумуляторах и как осушитель.
Тиосерная кислота H2S2O3 структурно аналогична серной кислоте за исключением замены одного кислорода на атом серы. Наиболее важным производным кислоты является тиосульфат натрия Na2S2O3 – бесцветные кристаллы, образующиеся при кипячении сульфита натрия Na2SO3 с серным цветом. Тиосульфат (или гипосульфит) натрия используется в фотографии как закрепитель (фиксаж).
Сульфонал (CH3)2C(SO2C2H5)2 – белое кристаллическое вещество, без запаха, слабо растворимое в воде, является наркотиком и используется как седативное и снотворное средство.
Сульфид водорода H2S (сероводород) – бесцветный газ с резким неприятным запахом тухлых яиц. Он несколько тяжелее воздуха (плотность 1,189 г/дм3), легко сжижается в бесцветную жидкость и хорошо растворим в воде. Раствор в воде является слабой кислотой с рН ~ 4. Жидкий сероводород используют как растворитель. Раствор и газ широко применяют в качественном анализе для отделения и определения многих металлов. Вдыхание незначительного количества сероводорода вызывает головную боль и тошноту, большие количества или непрерывное вдыхание сероводорода вызывают паралич нервной системы, сердца и легких. Паралич наступает неожиданно, в результате нарушения жизненных функций организма.
Монохлорид серы S2Cl2 – дымящая масляная жидкость янтарного цвета с едким запахом, слезоточивая и затрудняющая дыхание. Она дымит во влажном воздухе и разлагается водой, но растворима в сероуглероде. Монохлорид серы – хороший растворитель для серы, иода, галогенидов металлов и органических соединений. Монохлорид используется для вулканизации каучука, в производстве типографской краски и инсектицидов. При реакции с этиленом образуется летучая жидкость, известная как горчичный газ (ClC2H4)2S – токсичное соединение, используемое как боевое химическое отравляющее вещество раздражающего действия.
Дисульфид углерода CS2 (сероуглерод) – бледножелтая жидкость, ядовитая и легко воспламеняющаяся. CS2 получают синтезом из элементов в электрической печи. Вещество нерастворимо в воде, имеет высокий коэффициент светопреломления, высокое давление паров, низкую температуру кипения (46 C). Сероуглерод – эффективный растворитель жиров, масел, каучука и резин – широко используют для экстракции масел, в производстве искусственного шелка, лаков, резиновых клеев и спичек, уничтожения амбарных долгоносиков и одежной моли, для дезинфекции почв. [4]
Искусственные аналоги, подделки.
Искусственных аналогов и подделок не имеет.
Способы добычи и переработки.
В промышленности серу можно получать как побочный продукт процессов в плавильных, коксовых печах, при нефтепереработке, из топочных или природных газов. Из природных подземных отложений серу добывают, расплавляя ее перегретой водой и доставляя на поверхность сжатым воздухом и насосами. Во фраш-процессе извлечения серы из сероносных отложений на установке в виде концентрических труб, запатентованной Г.Фрашем в 1891, сера получается чистотой до 99,5%. [4]
Рис. ФРАШ-ПРОЦЕСС для извлечения природной серы из подземных месторождений.
Элементарную С. получают из серы самородной, а также окислением сернистого водорода и восстановлением сернистого ангидрида. О способах добычи С. см. Серные руды. Источник сернистого водорода для производства С. — коксовые, природные газы, газы крекинга нефти. Разработаны многочисленные методы переработки H2S; наибольшее значение имеют следующие: 2) H2S извлекают из газов раствором моногидротиоарсената натрия:
Na2HAsS2 + H2S = Na2HAsS3O + H2O.
Затем продувкой воздуха через раствор осаждают С. в свободном виде:
NaHAsS3O + 1/2 O2 = Na2HAsS2O2 + S.
3) H2S выделяют из газов в концентрированном виде. Затем его основная масса окисляется кислородом воздуха до С. и частично до SO2. После охлаждения H2S и образовавшиеся газы (SO2, N2, CO2) поступают в два последовательных конвертора, где в присутствии катализатора (активированный боксит или специально изготовляемый алюмогель) происходит реакция:
2H2S + SO2 = 3S + 2H2O.
В основе получения С. из SO2 лежит реакция восстановления его углём или природными углеводородными газами. Иногда это производство сочетается с переработкой пиритных руд.
В 1972 элементарной С. в мире (без социалистических стран) произведено 32,0 млн. т; основная масса её добывалась из природных самородных руд. В 70-е гг. 20 в. первостепенное значение (в связи с открытием крупных месторождений сероводородсодержащих топливных газов) приобретают методы получения С. из H2S.
Сорта С. Выплавленная непосредственно из серных руд С. называется природной комовой; полученная из H2S и SO2 — газовой комовой. Природная комовая С., очищенная перегонкой, называется рафинированной. Сконденсированная из паров при температуре выше точки плавления в жидком состоянии и затем разлитая в формы — черенковой С. При конденсации С. ниже точки плавления на стенках конденсационных камер образуется мелкий порошок С. — серный цвет. Особо высокодисперсная С. носит название коллоидной. [5]