
- •Предисловие
- •Введение Предмет физики и ее связь с другими науками
- •Единицы физических величин
- •§ 2. Скорость
- •§ 3. Ускорение и его составляющие
- •§ 4. Угловая скорость и угловое ускорение
- •§ 6. Второй закон Ньютона
- •§ 7. Третий закон Ньютона
- •§ 8. Силы трения
- •§ 9. Закон сохранения импульса. Центр масс
- •§ 10. Уравнение движения тела переменной массы
- •Глава 3 Работа и энергия §11. Энергия, работа, мощность
- •§ 12. Кинетическая и потенциальная энергии
- •§ 13. Закон сохранения энергии
- •§ 14. Графическое представление энергии
- •§ 15. Удар абсолютно упругих и неупругих тел
- •Глава 4 Механика твердого тела § 16. Момент инерции
- •§ 17. Кинетическая энергия вращения
- •§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела
- •§ 19. Момент импульса и закон его сохранения
- •§ 20. Свободныe оси. Гироскоп
- •§ 21. Деформации твердого тела
- •§ 23. Сила тяжести и вес. Невесомость
- •§ 24. Поле тяготения и его напряженность
- •§ 25. Работа в поле тяготения. Потенциал поля тяготения
- •§ 26. Космические скорости
- •§ 27. Неинерциальные системы отсчета. Силы инерции
- •Глава 6 Элементы механики жидкостей § 28. Давление в жидкости и газе
- •§ 29. Уравнение неразрывности
- •§ 30. Уравнение Бернулли и следствия из него
- •§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
- •§ 32. Методы определения вязкости
- •§ 33. Движение тел в жидкостях и газах
- •§ 35. Постулаты специальной (частной) теории относительности
- •§ 36. Преобразования Лоренца
- •§ 37. Следствия из преобразований Лоренца
- •§ 39. Основной закон релятивистской динамики материальной точки
- •§ 40. Закон взаимосвязи массы и энергии
- •§ 42. Уравнение Клапейрона — Менделеева
- •§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов
- •§ 44. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения
- •§ 45. Барометрическая формула. Распределение Больцмана
- •§ 46. Среднее число столкновений и средняя длина свободного пробега молекул
- •§ 47. Опытное обоснование молекулярно-кинетической теории
- •§ 48. Явления переноса в термодинамически неравновесных системах
- •§ 49. Вакуум и методы его получения. Свойства ультраразреженных газов
- •§ 51. Первое начало термодинамики
- •§ 52. Работа газа при изменении его объема
- •§ 53. Теплоемкость
- •§ 54. Применение первого начала термодинамики к изопроцессам
- •§ 55. Адиабатический процесс. Политропный процесс
- •§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы
- •§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
- •§ 58. Второе начало термодинамики
- •§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д . Для идеального газа
- •§ 61. Уравнение Ван-дер-Ваальса
- •§ 62. Изотермы Ван-дер-Ваальса и их анализ
- •§ 63. Внутренняя энергия реального газа
- •§ 64. Эффект Джоуля — Томсона
- •§ 65. Сжижение газов
- •§ 66. Свойства жидкостей. Поверхностноe натяжение
- •§ 67. Смачивание
- •§ 68. Давление под искривленной поверхностью жидкости
- •§ 69. Капиллярныe явления
- •§ 70. Твердыe тела. Моно- и поликристаллы
- •§ 71. Типы кристаллических твердых тел
- •§ 72. Дефекты в кристаллах
- •§ 73. Теплоемкость твердых тел
- •§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
- •§75. Фазовые переходы I и II рода
- •§ 76. Диаграмма состояния. Тройная точка
- •§ 78. Закон Кулона
- •§ 79. Электростатическое поле. Напряженность электростатического поля
- •§ 80. Принцип суперпозиции электростатических полей. Поле диполя
- •§ 81. Теорема Гаусса для электростатического поля в вакууме
- •§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •§ 83. Циркуляция вектора напряженности электростатического поля
- •§ 84. Потенциал электрического поля
- •§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
- •§ 86. Вычисление разности потенциалов по напряженности поля
- •§ 87. Типы диэлектриков. Поляризация диэлектриков
- •§ 88. Поляризованность. Напряженность поля в диэлектрике
- •§ 89. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
- •§ 90. Условия на границе раздела двух диэлектрических сред
- •§ 91. Сетнетоэлектрики
- •§ 92. Проводники в электростатическом поле
- •§ 93. Электрическая емкость уединенного проводника
- •§ 94. Конденсаторы
- •§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- •Глава 12 Постоянный электрический ток § 96. Электрический ток, сила и плотность тока
- •§ 97. Сторонние силы. Электродвижущая сила и напряжение
- •§ 98. Закон Ома. Сопротивление проводников
- •§ 99. Работа и мощность тока. Закон Джоуля — Ленца
- •§ 100. Закон Ома для неоднородного участка цепи
- •§ 101. Правила Кирхгофа для разветвленных цепей
- •§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
- •§ 104. Работа выхода электронов из металла
- •§ 105. Эмиссионные явления и их применение
- •§ 106. Ионизация газов. Несамостоятельный газовый разряд
- •§ 107. Самостоятельный газовый разряд и его типы
- •§ 108. Плазма и ее свойства
- •Глава 14 Магнитное поле § 109. Магнитное поле и его характеристики
- •§ 110. Закон Био - Савара - Лапласа и его применение к расчету магнитного поля
- •§ 111. Закон Ампера. Взаимодействие параллельных токов
- •§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
- •§ 113. Магнитное поле движущегося заряда
- •§ 114. Действие магнитного поля на движущийся заряд
- •§ 115. Движение заряженных частиц в магнитном поле
- •§ 116. Ускорители заряженных частиц
- •§ 117. Эффект Холла
- •§ 118. Циркуляция вектора в магнитного поля в вакууме
- •§ 119. Магнитные поля соленоида и тороида
- •§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля в
- •§ 121. Работа по перемещению проводника и контура с током в магнитном поле
- •§ 123. Закон Фарадея и его вывод из закона сохранения энергии
- •§ 125. Вихревые токи (токи Фуко)
- •§ 126. Индуктивность контура. Самоиндукция
- •§ 127. Токи при размыкании и замыкании цепи
- •§ 128. Взаимная индукция
- •§ 129. Трансформаторы
- •§ 130. Энергия магнитного поля
- •Глава 16 Магнитные свойства вещества § 131. Магнитные моменты электронов и атомов
- •§ 133. Намагниченность. Магнитное поле в веществе
- •§ 134. Условия на границе раздeла двух магнетиков
- •§ 135. Ферромагнетики и их свойства
- •§ 136. Природа ферромагнетизма
- •§ 138. Ток смещения
- •§ 139. Уравнения Максвелла для электромагнитного поля
- •§ 141. Механические гармонические колебания
- •§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники
- •§ 143. Свободные гармонические колебания в колебательном контуре
- •§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •§ 145. Сложение взаимно перпендикулярных колебаний
- •§ 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение.
- •§ 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
- •§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
- •§ 149. Переменный ток
- •§ 150. Резонанс напряжений
- •§ 151. Резонанс токов
- •§ 152. Мощность, выделяемая в цепи переменного тока
- •§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- •§ 155. Принцип суперпозиции. Групповая скорость
- •§ 156. Интерференция волн
- •§ 157. Стоячие волны
- •§ 158. Звуковые волны
- •§ 158. Эффект Доплера в акустике
- •§ 160. Ультразвук и его применение
- •§ 182. Дифференциальное уравнение электромагнитной волны
- •§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля
- •§ 164. Излучение диполя. Применение электромагнитных волн
- •§ 166. Тонкие линзы. Изображение предметов с помощью линз
- •§ 167. Аберрации (погрешности) оптических систем
- •§ 168. Основные фотометрические величины и их единицы
- •§ 169. Элементы электронной оптики
- •Глава 22 Интерференция света § 170. Развитие представлений о природе света
- •§ 171. Когерентность и монохроматичность световых волн
- •§ 172. Интерференция света
- •§ 173. Методы наблюдения интерференции света
- •§ 174. Интерференции света в тонких пленках
- •§ 175. Применение интерференции света
- •Глава 23 Дифракция света § 176. Принцип Гюйгенса — Френеля
- •§ 177. Метод зон Френеля. Прямолинейноe распространение света
- •§ 178. Дифракция Френеля на круглом отверстии и диске
- •§ 179. Дифракция Фраунгофера на одной щели
- •§ 180. Дифракция Фраунгофера на дифракционной решетке
- •§ 181. Пространственная решетка. Рассеянии света
- •§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- •§ 183. Разрешающая способность оптических приборов
- •§ 184. Понятие о голографии
- •Глава 24 Взаимодействие электромагнитных волн с веществом § 185. Дисперсия света
- •§ 186. Электронная теория дисперсии света
- •§ 187. Поглощение (абсорбция) света
- •§ 188. Эффект Доплера
- •§ 189. Излучение Вавилова — Черенкова
- •Глава 25 Поляризация света § 190. Естественный и поляризованный свет
- •§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •§ 192. Двойное лучепреломление
- •§ 193. Поляризационные призмы и поляроиды
- •§ 194. Анализ поляризованного света
- •§ 195. Искусственная оптическая анизотропия
- •§ 196. Вращение плоскости поляризации
- •Глава 26 Квантовая природа излучения § 197. Тепловое излучение и «го характеристики
- •§ 198. Закон Кирхгофа
- •§ 199. Законы Стефана — Больцмана и смещения Вина
- •§ 200. Формулы Рэлея — Джинса и Планка
- •§ 201. Оптическая пирометрия. Тепловые источники света
- •§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •§ 204. Применение фотоэффекта
- •§ 205. Масса и импульс фотона. Давление света
- •§ 206. Эффект Комптона и его элементарная теория
- •§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения
- •§ 209. Линейчатый спектр атома водорода
- •§ 210. Постулаты Бора
- •§ 211. Опыты Франка и Герца
- •§ 212. Спектр атома водорода по Бору
- •§ 214. Некоторые свойства волн де Бройля
- •§ 215. Соотношение неопределенностей
- •§ 216. Волновая функция и ее статистический смысл
- •§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- •§ 218. Принцип причинности в квантовой механике
- •§ 219. Движение свободной частицы
- •§ 220. Частица в одномерной прямоугольной «потенциальной яме» е бесконечно высокими «стенками»
- •§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- •§ 222. Линейный гармонический осциллятор в квантовой механике
- •§ 225. Спин электрона. Спиновое квантовое число
- •§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
- •§ 227. Принцип Паули. Распределение электронов в атоме по состояниям
- •§ 228. Периодическая система элементов Менделеева
- •§ 229. Рентгеновские спектры
- •§ 230. Молекулы: химические связи, понятие об энергетических уровнях
- •§ 231. Молекулярные спектры. Комбинационное рассеяние света
- •§ 232. Поглощение. Спонтанное и вынужденное излучения
- •§ 233. Оптические квантовые генераторы (лазеры)
- •§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
- •§ 236. Вырожденный электронный газ в металлах
- •§ 237. Понятие о квантовой теории теплоемкости. Фононы
- •§ 238. Выводы квантовой теории электропроводности металлов
- •§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона
- •Глава 31 Элементы физики твердого тела § 240. Понятие о зонной теории твердых тел
- •§ 241. Металлы, диэлектрики и полупроводники по зонной теории
- •§ 242. Собственная проводимость полупроводников
- •§ 243. Примесная проводимость полупроводников
- •§ 244. Фотопроводимость полупроводников
- •§ 245. Люминесценция твердых тел
- •§ 247. Термоэлектрические явления и их применение
- •§ 248. Выпрямление на контакте металл — полупроводник
- •§ 249. Контакт электронного и дырочного полупроводников (р-п-переход)
- •§ 250. Полупроводниковые диоды и триоды (транзисторы)
- •§ 252. Дефект массы и энергия связи ядра
- •§ 253. Спин ядра и его магнитный момент
- •§ 254. Ядерные силы. Модели ядра
- •§ 255. Радиоактивное излучение и его виды
- •§ 256. Закон радиоактивного распада. Правила смещения
- •§ 257. Закономерности -распада
- •§ 259. Гамма-излучение и его свойства
- •§ 260. Резонансное поглощение g-излучения (эффект Мбссбауэра**)
- •§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
- •§ 262. Ядерные реакции и их основные типы
- •§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
- •§ 265. Реакция деления ядра
- •§ 266. Цепная реакция деления
- •§ 267. Понятие о ядерной энергетикe
- •§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- •§ 270. Мюоны и их свойства
- •§ 271. Мезоны и их свойства
- •§ 273. Частицы и античастицы
- •§ 274. Гипероны. Странность и четность элементарных частиц
- •§ 275. Классификация элементарных частиц. Кварки
- •Заключение
- •Основные законы и формулы
- •127994, Москва, гсп-4, Неглинная ул., 29/14
- •432980, Г. Ульяновск, ул. Гончарова, 14
§ 164. Излучение диполя. Применение электромагнитных волн
Простейшим излучателем электромагнитных волн является электрический диполь, электрический момент которого изменяется во времени по гармоническому закону
где ро — амплитуда вектора р. Примером подобного диполя может служить система, состоящая из покоящегося положительного заряда +Q и отрицательного заряда —Q, гармонически колеблющегося вдоль направления р с частотой со.
Задача об излучении диполя имеет в теории излучающих систем важное значение, так как всякую реальную излучающую систему (например, антенну) можно рассчитывать рассматривая излучение диполя. Кроме того, многие вопросы взаимодействия излучения с веществом можно объяснить на основе классической теории, рассматривая атомы как системы зарядов, в которых электроны совершают гармонические колебания около их положений равновесия.
Характер электромагнитного поля диполя зависит от выбора рассматриваемой точки. Особый интерес представляет так называемая волновав зова диполя — точки пространства, отстоящие от диполя на расстояниях г, значительно превышающих длину волны (r ≫ ), — так как в ней картина электромагнитного поля диполя сильно упрощается. Это связано с тем, что в волновой зоне диполя практически остаются только «отпочковавшиеся» от диполя, свободно распространяющиеся поля, в то время как поля, колеблющиеся вместе с диполем и имеющие более сложную структуру, сосредоточены в области расстояний r
Если волна распространяется в однородной изотропной среде, то время прохождения волны до точек, удаленных от диполя на расстояние r, одинаково. Поэтому во всех точках сферы, центр которой совпадает с диполем, фаза колебаний одинакова, т. е. в волновой зоне волновой фронт будет сферическим и, следовательно, волна, излучаемая диполем, есть сферическая волна.
В каждой точке векторы Е и Н колеблются по закону cos(t—kr), амплитуды этих векторов пропорциональны (1/г)sin (для вакуума), т. е. зависят от расстояния r до излучателя и угла между направлением радиуса-вектора и осью диполя. Отсюда следует, что интенсивность излучения диполя в волновой зоне
(164.1)
Зависимость (164.1) I от при заданном значении r, приводимая в полярных координатах (рис. 228), называется диаграммой направленности излучения диполя. Как видно из выражения (164.1) и приведенной диаграммы, диполь сильнее всего излучает в направлениях, перпендикулярных его оси ( = /2). Вдоль своей оси ( = 0 и = ) диполь не излучает вообще. Диаграмма направленности излучения диполя позволяет формировать излучение с определенными характеристиками и используется при конструировании антенн.
Рис. 228
Впервые электромагнитные волны были использованы через семь лет после опытов Герца. 7 мая 189S т. преподаватель физики офицерских минных классов А. С. Попов (1859—1906) на заседании Русского физико-химического общества продемонстрировал первый в мире радиоприемник, открывший возможность практического использования электромагнитных воли для беспроволочной связи, преобразившей жизнь человечества. Первая переданная в мире радиограмма содержала лишь два слова: «Генрих Герц». Изобретение радио Поповым сыграло огромную роль для распространения и развития теории Максвелла.
Электромагнитные волны сантиметрового и миллиметрового диапазонов, встречая на своем пути преграды, отражаются от них. Это явление лежит в основе радиолокации — обнаружения предметов (например, самолетов, кораблей и т. д.) на больших расстояниях и точного определения их положения. Помимо этого, методы радиолокации используются для наблюдения прохождения и образования облаков, движения метеоритов в верхних слоях атмосферы и т. д.
Для электромагнитных волн характерно явление дифракции — огибания волнами различных препятствий. Именно благодаря дифракции радиоволн возможна устойчивая радиосвязь между удаленными пунктами, разделенными между собой выпуклостью Земли. Длинные волны (сотни и тысячи метров) применяются в фототелеграфии, короткие волны (несколько метров и меньше) применяются в телевидении для передачи изображений на небольшие расстояния (немногим больше пределов прямой видимости). Электромагнитные волны используются также в радиогеодезии для очень точного определения расстояний с помощью радиосигналов, в радиоастрономии для исследования радиоизлучения небесных тел и т. д. Полное описание применения электромагнитных волн дать практически невозможно, так как нет областей науки в техники, где бы они не использовались.
Задачи
20.1. Электромагнитная волна с частотой 4 МГц переходит из немагнитной среды с диэлектрической проницаемостью =3 в вакуум. Определить приращение ее длины волны. [31,7 м]
20.2. Два параллельных провода, одни концы которых изолированы, а другие индуктивно соединены с генератором электромагнитных колебаний, погружены в спирт. При соответствующем подборе частоты колебаний в системе возникают стоячие волны. Расстояние между двумя узлами стоячих волн на проводах равно 0,5 м. Принимая диэлектрическую проницаемость спирта = 26, а его магнитную проницаемость = 1. определить частоту колебаний генератора. [58,8 МГц]
20.3. В вакууме вдоль оси х распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля волны составляет 18,8 В/м. Определить интенсивность волны, т. е. среднюю энергию, приходящуюся за единицу времени на единицу площади, расположенной перпендикулярно направлению распространения волны. [0.47 Вт/м2]
ОПТИКА.
КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ
Глава 21
Элементы геометрической
и электронной оптики
§ 165. Основные законы оптики.
Полноe отражение
Еще до установления природы света были известны следующие основные законы оптики: закон прямолинейного распространения света в оптически однородной среде; закон независимости световых пучков (справедлив только в линейной оптике); закон отражения света; закон преломления света.
Закон прямолинейного распространения света: свет в оптически однородной среде распространяется прямолинейно.
Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их точечными источниками света (источники, размеры которых значительно меньше освещаемого предмета и расстояния до него). Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит сквозь очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.
Закон независимости световых пучков: эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены. Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо.
Если свет падает на границу раздела двух сред (двух прозрачных веществ), то падающий луч I (рис. 229) разделяется на два — отраженный II и преломленный III, направления которых задаются законами отражения и преломления.
Рис. 229
Закон отражения: отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения; угол i'1, отражения равен углу i1 падения:
Закон преломления: луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред:
(165.1)
где n21 — относительный показатель преломления второй среды относительно первой. Индексы в обозначениях углов i1, i1, i2 указывают, в какой среде (первой или второй) вдет луч.
Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:
(165.2)
Абсолютным показателем преломления среды называется величина n, равная отношению скорости с электромагнитных волн в вакууме к их фазовой скорости v в cреде:
(165.3)
Сравнение
с формулой (162.3) дает, что
,
где
и
—
соответственно электрическая и магнитная
проницаемости среды. Учитывая (165.2),
закон преломления (165.1) можно записать
в виде
(165.4)
Из симметрии выражения (165.4) вытекает обратимость световых лучей. Если обратить луч III (рис. 229), заставив его падать на границу раздела под углом i2, то преломленный луч в первой среде будет распространяться под углом i1 т. е. пойдет в обратном направлении вдоль луча I.
Если свет распространяется из среды с большим показателем преломления n1 (оптически более плотной) в среду с меньшим показателем преломления n2 (оптически менее плотную) (n1 > n2), например из стекла в воду, то, согласно (165.4),
Отсюда следует, что преломленный луч удаляется от нормали и угол преломления i2 больше, чем угол падения i1 (рис. 230, а). С увеличением угла падения увеличивается угол преломления (рис. 230, б, в) до тех пор, пока при некотором угле падения (i1 = iпр,) угол преломления не окажется равным /2. Угол iпр называется предельным углом. При углах падения i1 > iпр весь падающий свет полностью отражается (рис. 230, г).
Рис. 230
По мере приближения утла падения к предельному интенсивность преломленного луча уменьшается, а отраженного — растет (рис. 230, а—в). Если i1 = iпр, то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего (рис. 230, г). Таким образом, при углах падения в пределах от iпр, до /2 луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением.
Предельный угол iпр определим из формулы (165.4) при подстановке в нее i2 = /2.
Тогда
(165.5)
Уравнение (165.5) удовлетворяет значениям угла iпр при n2 n1. Следовательно, явление полного отражения имеет место только при падении света из среды оптически более плотной в среду оптически менее плотную.
Явление полного отражения используется в призмах полного отражения. Показатель преломления стекла равен n 1,5, поэтому предельный угол для границы стекло — воздух равен iпр =arcsin(l/l,5) = 42°. Поэтому при падении света на границу стекло — воздух при i > 42° всегда будет иметь место полное отражение. На рис. 231, а—в показаны призмы полного отражения, позволяющие: а) повернуть луч на 90°; б) повернуть изображение; в) обернуть лучи. Такие призмы применяются в оптических приборах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломления, измеряя iпр, находим относительный показатель преломления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления другой среды известен).
Явление полного отражения используется также в световодах (светопроводах), представляющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала. В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцевина) которого окружается стеклом — оболочкой из другого стекла с меньшим показателем прело мления. Свет, падающий на торец световода под углами, большими предельного, претерпевает на поверхности раздела сердцевины и оболочки полное отражение и распространяется только по световедущей жиле.
Рис. 231
Таким образом, с помощью световодов можно как угодно искривлять путь светового пучка. Диаметр световедущих жил лежит в пределах от нескольких микрометров до нескольких миллиметров. Для передачи изображений, как правило, применяются многожильные световоды. Вопросы передачи световых волн и изображений изучаются в специальном разделе оптики — волоконной оптике, возникшей в 50-е годы XX столетия. Световоды используются в электронно-лучевых трубках, в электронно-счетных машинах, для кодирования информации, в медицине (например, диагностика желудка), для целей интегральной оптики и т. д.