Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
неофициальная шпора.doc
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
444.93 Кб
Скачать

§ 5. Релятивистская механика. Основные формулы

В специальной теории относительности рассматриваются только инерциальные системы отсчета. Во всех задачах считается, что оси у, у' и z, z' сонаправлены, а относительная скорость υ0 системы ко­ординат К' относительно системы К нап­равлена вдоль общей оси хх' (рис. 5.1).

• Релятивистское (лоренцево) сок­ращение длины стержня

Рис. 5.1

где l0 — длина стержня в системе коор­динат К' , относительно которой стержень покоится (собственная длина). Стержень параллелен оси х'; l

длина стержня, измеренная в системе К, относительно которой он движется со скоростью υ; с — скорость распространения электромагнитного излучения.

• Релятивистское замедление хода часов

где Δt0 — интервал времени между двумя событиями, происходя­щими в одной точке системы K', измеренный по часам этой системы (собственное время движущихся часов); Δt — интервал времени между двумя событиями, измеренный по часам системы K.

• Релятивистское сложение скоростей

,

где υ' — относительная скорость (скорость тела относительно си­стемы K'); υ0 — переносная скорость (скорость системы K' относи­тельно К), υ0 — абсолютная скорость (скорость тела относительно системы К).

В теории относительности абсолютной скоростью называется скорость тела в системе координат, условно принятой за непод­вижную.

• Релятивистская масса

, ИЛИ ,

где т0 — масса покоя; β — скорость частицы, выраженная в долях скорости света

• Релятивистский импульс

, или

• Полная энергия релятивистской частицы

где Т — кинетическая энергия частицы; — ее энергия покоя. Частица называется релятивистской, если скорость частицы сравнима со скоростью света, и классической, если υ<<с.

• Связь полной энергии с импульсом релятивистской частицы

• Связь кинетической энергии с импульсом релятивистской частицы

§ 6. Механические колебания Основные формулы

• Уравнение гармонических колебаний

где х — смещение колеблющейся точки от положения равновесия; t — время; А, ω, φ— соответственно амплитуда, угловая частота, начальная фаза колебаний; — фаза колебаний в момент t.

• Угловая частота колебаний

, или ,

где ν и Т — частота и период колебаний.

• Скорость точки, совершающей гармонические колебания,

• Ускорение при гармоническом колебании

• Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами, происходящих по одной прямой, определяется по формуле

где a1 и А2амплитуды составляющих колебаний; φ1 и φ2— их начальные фазы.

• Начальная фаза φ результирующего колебания может быть найдена из формулы

• Частота биений, возникающих при сложении двух колебаний, происходящих по одной прямой с различными, но близкими по зна­чению частотами ν1 и ν2,

• Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с амплитудами A1 и A2 и начальны­ми фазами φ1 и φ2,

Если начальные фазы φ1 и φ2 составляющих колебаний одинако­вы, то уравнение траектории принимает вид

т. е. точка движется по прямой.

В том случае, если разность фаз , уравнение принимает вид

т. е. точка движется по эллипсу.

• Дифференциальное уравнение гармонических колебаний ма­териальной точки

, или , где m — масса точки; kкоэффициент квазиупругой силы (k=тω2).

• Полная энергия материальной точки, совершающей гармони­ческие колебания,

• Период колебаний тела, подвешенного на пружине (пружин­ный маятник),

где m — масса тела; kжесткость пружины. Формула справедлива для упругих колебаний в пределах, в ко­торых выполняется закон Гука (при малой массе пружины в срав­нении с массой тела).

Период колебаний математического маятника

где l — длина маятника; gускорение свободного падения. Период колебаний физического маятника

где J — момент инерции колеблющегося тела относительно оси

колебаний; а — расстояние центра масс маятника от оси колебаний;

— приведенная длина физического маятника.

Приведенные формулы являются точными для случая бесконеч­но малых амплитуд. При конечных амплитудах эти формулы дают лишь приближенные результаты. При амплитудах не более ошибка в значении периода не превышает 1 %.

Период крутильных колебаний тела, подвешенного на упругой нити,

где Jмомент инерции тела относительно оси, совпадающей с упругой нитью; kжесткость упругой нити, равная отношению упругого момента, возникающего при закручивании нити, к углу, на который нить закручивается.

• Дифференциальное уравнение затухающих колебаний , или ,

где r — коэффициент сопротивления; δкоэффициент затухания: ; ω0— собственная угловая частота колебаний *

• Уравнение затухающих колебаний

где A (t) — амплитуда затухающих колебаний в момент t; ω — их угловая частота.

• Угловая частота затухающих колебаний

О Зависимость амплитуды затухающих колебаний от времени

I

где А0амплитуда колебаний в момент t=0.

• Логарифмический декремент колебаний

где A (t) и A (t+T) — амплитуды двух последовательных колеба­ний, отстоящих по времени друг от друга на период.

• Дифференциальное уравнение вынужденных колебаний

, или

,

где — внешняя периодическая сила, действующая на колеблющуюся материальную точку и вызывающая вынужденные колебания; F0ее амплитудное значение;

• Амплитуда вынужденных колебаний

• Резонансная частота и резонансная амплитуда и

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]