
- •1. Электрическая цепь и ее элементы. Условные положительные направления эдс, напряжения и тока.
- •2. Анализ цепей постоянного тока. Закон Ома. Законы Кирхгофа.
- •3. Энергия и мощность. Баланс мощностей.
- •4. Расчет сложных цепей постоянного тока с помощью законов Кирхгофа.
- •5. Расчет сложных цепей постоянного тока с помощью метода 2-х узлов.
- •6.Метод наложения.
- •7. Синусоидальный ток. Получение.
- •8. Представление синусоидальных величин вращающимися векторами на декартовой и комплексной плоскости.
- •10 Параллельное соединение r, l, с элементов. Проводимости, векторная диаграмма токов. Резонанс токов.
- •11. Мощности в цепях переменного тока( активная, реактивная и полная), коэффициент мощности и его экономическое значение. Способы повышения коэффициента мощности.
- •12. Получение 3-х фазного тока. Способ вкл. В 3-х фазную сеть. Симметрическая и несимметрическая нагрузка.
- •13. Соединение 3-х фазных приемников «звездой» с нулевым проводом
- •14. Соединение 3-х фазазных приемников «звездой» без нулевого провода.
- •15. Соединение 3-х фазных приемников «треугольником»
- •16. Мощность 3-х фазных цепей.
- •17. Измерение активной и реактивной мощности в цепях 3-х фазного тока
- •18 Защитные заземление и зануление
- •19. Трансформатор. Устройство, принцип действия, классификация трансформаторов.
- •20. Режим холостого хода трансформатора. Эдс первичной и вторичной обмоток. Коэффициент трансформации.
- •21. Работа трансформатора под нагрузкой. Уравнения первичной и вторичной обмоток.
- •22. Основной поток. Потоки рассеяния. Уравнение намагничивающих сил трансформатора. Уравнение токов.
- •23. Опыты холостого хода и короткого замыкания. Кпд трансформатора.
- •24.Трехфазные трансформаторы
- •25.Асинхронные двигатели.
- •26. Вращающееся магнитное поле
- •27.Принцип действия асинхронных электродвигателей.
- •28.Уравнение электрического состояния ротора
- •29. Электромагнитный вращающий момент. Механическая характеристика ад.
- •30.Рабочие характеристики асинхронного двигателя
- •31 Пуск асинхронного двигателя
- •32.Регулирование частоты вращения асинхронных двигателей
- •33 Однофазные двигатели. Пуск двигателя
- •34. Синхронные машины. Обратимость см. Устройство см. Работа см в режиме генератора.
- •35. Работа см в режиме двигателя. Схема замещения сд. Векторная диаграмма. Уравнение электрического состояния сд.
- •36. Электромагнитный вращающий момент. Угловая характеристика.
- •37.Влияние тока возбуждения на коэффициент мощности синхронного двигателя и перегрузочную способность сд.
- •38. Пуск сд в ход.
- •39 Машины постоянного тока. Устройство.
- •41. Эдс и электромагнитный момент двигателя постоянного тока.
30.Рабочие характеристики асинхронного двигателя
Рабочие характеристики асинхронного двигателя представляют собой зависимости скольжения S, числа оборотов ротора n2, развиваемого момента М, потребляемого тока I1, расходуемой мощности Р1, коэффициента мощности соs j и к. п. д. η от полезной мощности Р2 на валу машины. Эти характеристики (рис. 115) снимаются три естественных условиях работы двигателя, т. е. двигатель нерегулируемый, частота f1 и напряжение U1 сети остаются постоянными, а изменяется только нагрузка на валу двигателя.
П
ри
увеличении нагрузки на валу двигателя
скольжение возрастет, причем при больших
нагрузках скольжение увеличивается
несколько быстрее, чем при малых.
При холостом ходе двигателя п2=n1 или S=0.
При номинальной нагрузке скольжение обычно составляет S = 3-5%.
Скорость вращения ротора
Так как при увеличении нагрузки на валу двигателя скольжение возрастает, то число оборотов будет уменьшаться. Однако изменение скорости вращения при увеличении нагрузки от 0 до номинальной очень незначительно и не превышает 5%.
Вращающий момент, развиваемый двигателем М, уравновешен тормозным моментом на валу М2 и моментом, идущим на преодоление механических потерь М0, т. е.
где Р2 — полезная мощность двигателя,
W2 — угловая скорость ротора.
При холостом ходе двигателя вращающий момент равен М0; с увеличением нагрузки на валу этот момент также увеличивается, причем за счет некоторого уменьшения скорости ротора увеличение вращающего момента происходит быстрее, чем увеличение полезной мощности на валу.
Сила тока I1 потребляемого двигателем из сети, неравномерно изменяется с увеличением нагрузки на валу двигателя. Потребляемая двигателем мощность Р1 при графическом изображении имеет вид почти прямой линии, незначительно отклоняющейся вверх при больших нагрузках, что объясняется увеличением потерь в обмотках статора и ротора с увеличением нагрузки.
Кривая к. п. д. т) имеет такой же вид, как в любой машине или трансформаторе. При холостом ходе к. п. д. равен нулю. С увеличением нагрузки на валу двигателя к. п. д. резко увеличивается, а затем уменьшается. Наибольшего значения к. п. д. достигает при такой нагрузке, когда потери мощности в стали и механические потери, не зависящие от нагрузки, равны потерям мощности в обмотках статора и ротора, зависящим от нагрузки.
31 Пуск асинхронного двигателя
Для пуска двигателя его обмотку статора подключают к трехфазной сети с помощью выключателя. После включения выключателя происходит разгон двигателя. Двигатель разгоняется до установившейся частоты вращения, при которой момент, развиваемый двигателем равен моменту сил сопротивления на его валу.
В условиях нормальной работы момент на валу двигателя может изменяться в довольно широких пределах, но, если момент окажется больше М, двигатель остановится. Допустимые изменения находятся в пределах от М ~ 0 до М - (0,8 v 0,9) Мт , имеется в виду работа в зоне характеристики, гдеТ> s
Большой пусковой ток ограничивает допустимое число пусков двигателя в час. При большом числе включений даже малозагруженный в установившемся режиме двигатель из-за больших пусковых токов может перегреться и выйти из строя.
В маломощных сетях, сечение проводов которых невелико, а протяженность значительна, для ограничения пускового тока применяют пуск с активным или индуктивным сопротивлением
Пуск двигателя с переключением со звезды на треугольник возможен, когда обмотка статора может быть соединена звездой и треугольником и напряжение сети соответствует соединению обмотки статора треугольником.
Из-за значительного снижения пускового момента указанный способ пуска возможен только при малых моментах сил сопротивления на валу двигателя.