
- •Кафедра «Теория механизмов и машин» теория механизмов и машин конспект лекций
- •Лекция 31. Пространственные зубчатые передачи.
- •1.2. Механизмы современной техники.
- •1.3. Задачи и основные методы теории механизмов и машин.
- •План лекции
- •1. 5. 2 Классификация кинематических пар по числу связей.
- •1.5.3 Степень подвижности кинематической цепи.
- •5. 7 Избыточные связи.
- •План лекции
- •1. 5. 5 Образование механизма из кинематической цепи.
- •1. 5. 6 Принцип образования механизмов по Ассуру.
- •1. 5. 6 Принцип образования механизмов по Ассуру.
- •1. 5. 7 Избыточные связи
- •1. 5. 8 Классификация механизмов по общим свойствам.
- •1.5.9 Виды механизмов.
- •Тема 2
- •Лекция 4 План лекции
- •2. 2 Графический метод кинематического анализа - метод кинематических диаграмм.
- •2. 2. 1 Определение положений звеньев, построение траекторий точек и кинематических диаграмм.
- •2. 2. 2 Графическое дифференцирование.
- •2.2.3 Графическое интегрирование.
- •2.3.1 Построение планов скоростей.
- •2.3.2 Построение планов ускорений.
- •2.5 Метод преобразования координат.
- •2.5.1. Определение положений точек в незамкнутых кинематических цепях.
- •2.5.2 Определение положений точек в замкнутых кинематических цепях.
- •2. 14 Преобразование координатных систем.
- •2 .5.4 Уравнения преобразования координат для конкретных кинематических пар,
- •5. 5 Определение положения захвата пространственного манипулятора в неподвижной системе координат.
- •Лекция 8
- •2.5.6 Определение положения точек в плоских механизмах
- •2.5.7 Определение положений точек, скоростей и ускорений
- •2.5.6 Определение положений точек в плоских механизмах векторным методом.
- •2.5.7 Определение угловых скоростей и ускорений звеньев и линейных скоростей и ускорений точек плоских механизмов. Аналоги скоростей и ускорений.
- •3.1. Введение в динамику машин.
- •3.2.1 Классификация сил.
- •3.1 Введение в динамику машин.
- •3.2. Силы, действующие в машинах.
- •3.2.1 Классификация сил.
- •Внешние и внутренние силы.
- •2. Силы движущие и силы сопротивления.
- •3.2.2 Определение сил инерции.
- •3.4.Кинетостатический расчет механизмов.
- •3.4.1 Задачи кинетостатики механизмов.
- •3.4.2 Условия статической определимости групп звеньев.
- •3.4.3 Графоаналитический метод кинетостатического расчета групп второго класса.
- •2. Группа 2-го вида
- •3.4.4 Аналитический метод кинетостатического
- •3.4.5 Кинетостатика ведущего звена.
- •3.4.4 Аналитический метод кинетостатического
- •Лекция 12. План лекции.
- •3.5.1 Трение в поступательных кинематических
- •3.5.2 Трение во вращательной кинематической паре.
- •3. 6. Передача работы и мощности. Кпд машин. Коэффициент потерь.
- •3.6.1 Кпд поступательной кинематической пары.
- •3.6.3. Определение кпд механизма.
- •3.6.4 Кпд соединенных машин.
- •3.7.1 Общие условия уравновешивание вращающихся масс.
- •3.7.2 Статическое уравновешивание.
- •Уравновешивание в общем случае или динамическое уравновешивание.
- •3.7.4 Статическая и динамическая балансировка вращающихся масс.
- •3.7.6. Уравновешивание шарнирного четырехзвенника.
- •3.8. Движение машин под действием заданных сил.
- •3.8.1. Режимы движения машины.
- •3.8.2. Характеристика внешних сил.
- •Кинетическая энергия звеньев и работа сил, действующих в машинах.
- •Приведение сил и масс .Динамические модели машины.
- •Определение приведенных моментов инерции и моментов сил кривошипно-ползунного механизма.
- •Приведение сил и масс. Динамические модели машины.
- •3.8.5 Определение приведенных моментов инерции и моментов сил кривошипно – ползунного механизма.
- •Лекция 16.
- •3.8.7. Уравнения движения машины в форме интеграла энергии.
- •3.8.8 Уравнения движения в дифференциальной форме.
- •Разрешим уравнение (3.57) относительно углового ускорения
- •3.8.13 Определение момента инерции маховика.
- •3.8.16 Уравнения движения машины с учетом упругости звеньев.
- •Тема 4. Общие методы синтеза механизмов. (4 часа).
- •План лекции
- •4. 1. Основные задачи и метода синтеза.
- •4. 2. Основные и дополнительные условия синтеза. Ограничения при синтезе.
- •4. 3. Методы оптимального синтеза.
- •4. 4. Синтез механизмов на основании заданной целевой функции.
- •4. 5. Интерполяционный метод синтеза механизмов.
- •Лекция 20.
- •4.6. Синтез механизмов методом наилучшего приближения функций.
- •4.7. Метод квадратичного приближения.
- •4.6. Синтез механизмов методом наилучшего приближения функций.
- •4.7. Метод квадратичного приближения.
- •Тема 5 Синтез плоских рычажных механизмов (4 часа) Лекция 21 План лекции
- •5.1 Основные условия и ограничения при синтезе.
- •5.2 Синтез четырехзвенного кривошипно-коромыслового. Механизма по трем положениям, аналитическим методом.
- •5.3 Синтез четырехзвенного кривошипно-коромыслового механизма по двум крайним положениям коромысла, коэффициенту изменения средней скорости и допускаемому углу давления.
- •5.1 Основные условия и ограничения при синтезе.
- •5.2 Синтез четырехзвенного кривошипно-ползунного коромыслового механизма по трем положениям аналитическим методом.
- •5.3 Синтез четырехзвенного кривошипно-коромыслового механизма по двум крайним положениям коромысла, коэффициенту изменения средней скорости и допускаемому углу давления.
- •План лекции
- •5.4.L Синтез кривошипно-коромыслового механизма.
- •5.4.2 Синтез кривошипно-ползунного механизма.
- •5.4.З Синтез кулисного механизма.
- •9.2. Фазы движения толкателя
- •9.3. Обоснование выбора закона движения
- •Лекция 24. План лекции.
- •6.4. Кинематический анализ кулачковых механизмов.
- •6.5 Синтез кулачковых механизмов.
- •6.6 Проектирование по кинематическим параметрам. Построение профиля кулачка при поступательном движении толкателя.
- •6.4 Проектирование по динамическим параметрам. Определение текущих углов давления. Аналог скорости
- •Лекция 25 План лекции.
- •6.10. Графическое определение текущих углов давления.
- •6.11 Аналитический метод определения основных размеров кулачкового механизма по заданному допускаемое углу давления.
- •6.12. Силовой расчет кулачкового механизма.
- •Глава 7. Синтез зубчатых зацеплений. (12 часов).
- •7.2. Основная теорема зацепления. Полюс зацепления. Центроиды колес.
- •7.3. Цилиндрическая эвольвентная зубчатая передача..
- •7.1 Виды зубчатых механизмов
- •7.2. Основная теорема зацепления. Полюс зацепления. Центроиды колес.
- •7.3. Цилиндрическая эвольвентная зубчатая передача.
- •Окружность
- •Окружность
- •5. Эвольвента - кривая без перегибо Лекция 27. План лекции
- •7.4. Элементы эвольвентного зубчатого колеса
- •Элементы и свойства эвольвентного зацепления
- •7.6 Коэффициент перекрытия
- •7.4. Элементы эвольвентного зубчатого колеса
- •7.5 Элементы и свойства эвольвентного зацепления
- •7.6. Коэффициент перекрытия
- •Лекция 28. План лекции
- •7.7. Интерференция зубьев. Условие отсутствия заклинивания
- •7.8. Внутреннее зацепление (рис.7.9)
- •7.9. Реечное зацепление (рис.7.10)
- •7.10. Изготовление зубчатых колес.
- •Лекция 29. План лекции
- •Смещение исходного контура и его влияние на форму нарезаемых зубьев.
- •Определение размеров колеса
- •7.14. Толщина зуба по произвольной окружности.Условие отсутствия заострения
- •7.15. Условие отсутствия подрезания
- •7.16 Эвольвентное беззазорное зацепление. Определение межосевого расстояния и угла зацепления. Воспринимаемое и уравнительное смещение.
- •7.17 Проектирование зубчатых передач. Выбор коэффициента смещения.
- •7.18 Косозубая цилиндрическая передача,
- •7.17 Проектирование зубчатых передач. Выбор коэффициента смещения.
- •7.18 Косозубая цилиндрическая передача.
- •7.21 Передачи с перекрещивающимися осями.
- •7.21.1 Винтовая передача.
- •7.21.2 Червячная передача.
- •Тема 8. Синтез механизмов с подвижными осями. Лекция 32.
- •Кинематическое исследование планетарных механизмов графическим методом Куцбаха – Смирнова.
- •Тема 9. Основы теории машин - автоматов. ( 4 часа)
- •План лекции:
- •9.1.2. Управление от копиров.
- •9.1.3. Следящий привод.
- •Промышленные роботы
- •9.3. Рабочий объем манипулятора и классификация движений захвата
- •9.4. Влияние расположения кинематических пар манипулятора на его маневренность
- •9.5 Структурный синтез манипуляторов
- •9.6 Зоны обслуживания, угол и коэффициент
- •Список литературы.
Тема 2
Кинематический анализ механизмов / 10 часов/
Лекция 4 План лекции
2. 1 Основные методы кинематического анализа.
2. 2 Графический метод кинематического анализа -- метод кинематический диаграмм.
2. 2. 1 Определение положений звеньев, построение траекторий то точек и кинематических диаграмм.
2. 2. 2 Графическое дифференцирование.
2. 2. 3 Графическое интегрирование.
2. 1 Основные методы кинематического анализа.
Задачей кинематического анализа является изучение движения звеньев механизма вне зависимости от сил, действующих на них.
В результате по заданному закону движения ведущего звена определяются положения, угловые скорости и ускорения ведомых звеньев, а также перемещения, скорости, ускорения отдельных точек.
Кинематическое исследование схем механизмов производится аналитическими и графическими методами.
Аналитические методы позволяют с требуемой точностью установить аналитически функциональную зависимость кинематических параметров механизма от параметров звеньев. Эти методы отличаются сложностью и трудоемкостью. Их применение оправдывается при использовании ЭВМ. Графические методы исследования разделяются на:
1. Метод построения кинематических диаграмм.
2. Метод планов скоростей и ускорений. Метод построения кинематических диаграмм основан на графическом изображении перемещений, скоростей или ускорений отдельных точек звеньев в функции времени или перемещений ведущего звена.
Переход от графиков перемещений к графикам скоростей и ускорений производится путем графического дифференцирования, а обратно - графическим интегрированием.
Этот метод дает наглядное представление об изменении кинематических параметров во времени.
Метод планов скоростей и ускорений позволяет при наличии планов положений механизма определить скорости и ускорения любых точек механизма для любого момента времени.
2. 2 Графический метод кинематического анализа - метод кинематических диаграмм.
2. 2. 1 Определение положений звеньев, построение траекторий точек и кинематических диаграмм.
Кинематические
исследования этим методом начинаются
с построена плана механизма, т.
е. изображение
его кинематической схемы в выбранном
масштабе длины звеньев
[
],где
-истинный размер звена,
-его масштабное изображение в мм.
Разбив траекторию движения ведущего звена на 12 или 24 равные части можно методом засечек определить положения всех остальных звеньев в выбранные моменты времени. При построении планов положений механизма следует начинать с одного из крайних положений, ограничивающих траектории точек звеньев, совершающих возвратное движение. Например, при построении планов положений шарнирного кривошипно - шатунного механизма АВС за нулевое положение кривошипа АВ выбрано положение, когда ползун С занимает крайнее левое положение и кривошип совпадает с направлением шатуна ВС. Если из точек 1, 2, 3, и т. д. окружности радиуса ОА последовательно делать засечки радиусом АВ на траектории точки В, полученные точки соединим прямыми, то найдем ряд положений механизма. Траекторию движения интересующих точек (например, центр тяжести шатуна) построим, соединив эти точки в последовательных положениях механизма плавной кривой.
Функцию
положения ведомого звена
(ползуна)
можно
представить графически в прямоугольной
системе координат. Каждому положению
точки В через момент времени будут
соответствовать ординаты графика (рис.
2. 2
).
показывающие
перемещения точки С. Масштабный
коэффициент по оси
ординат может быть выбран равным или
кратным масштабному коэффициенту
,
а масштабный
коэффициент
[
].
Период
вращения кривошипа
-
число оборотов
,
если
его угловая
скорость.
Р
ис.2.1.
План положений кривошипно - шатунного
механизма.
Р
ис.2.2.
График перемещений.
Рис. 2.3. К теории графического дифференцирования