
- •Кафедра «Теория механизмов и машин» теория механизмов и машин конспект лекций
- •Лекция 31. Пространственные зубчатые передачи.
- •1.2. Механизмы современной техники.
- •1.3. Задачи и основные методы теории механизмов и машин.
- •План лекции
- •1. 5. 2 Классификация кинематических пар по числу связей.
- •1.5.3 Степень подвижности кинематической цепи.
- •5. 7 Избыточные связи.
- •План лекции
- •1. 5. 5 Образование механизма из кинематической цепи.
- •1. 5. 6 Принцип образования механизмов по Ассуру.
- •1. 5. 6 Принцип образования механизмов по Ассуру.
- •1. 5. 7 Избыточные связи
- •1. 5. 8 Классификация механизмов по общим свойствам.
- •1.5.9 Виды механизмов.
- •Тема 2
- •Лекция 4 План лекции
- •2. 2 Графический метод кинематического анализа - метод кинематических диаграмм.
- •2. 2. 1 Определение положений звеньев, построение траекторий точек и кинематических диаграмм.
- •2. 2. 2 Графическое дифференцирование.
- •2.2.3 Графическое интегрирование.
- •2.3.1 Построение планов скоростей.
- •2.3.2 Построение планов ускорений.
- •2.5 Метод преобразования координат.
- •2.5.1. Определение положений точек в незамкнутых кинематических цепях.
- •2.5.2 Определение положений точек в замкнутых кинематических цепях.
- •2. 14 Преобразование координатных систем.
- •2 .5.4 Уравнения преобразования координат для конкретных кинематических пар,
- •5. 5 Определение положения захвата пространственного манипулятора в неподвижной системе координат.
- •Лекция 8
- •2.5.6 Определение положения точек в плоских механизмах
- •2.5.7 Определение положений точек, скоростей и ускорений
- •2.5.6 Определение положений точек в плоских механизмах векторным методом.
- •2.5.7 Определение угловых скоростей и ускорений звеньев и линейных скоростей и ускорений точек плоских механизмов. Аналоги скоростей и ускорений.
- •3.1. Введение в динамику машин.
- •3.2.1 Классификация сил.
- •3.1 Введение в динамику машин.
- •3.2. Силы, действующие в машинах.
- •3.2.1 Классификация сил.
- •Внешние и внутренние силы.
- •2. Силы движущие и силы сопротивления.
- •3.2.2 Определение сил инерции.
- •3.4.Кинетостатический расчет механизмов.
- •3.4.1 Задачи кинетостатики механизмов.
- •3.4.2 Условия статической определимости групп звеньев.
- •3.4.3 Графоаналитический метод кинетостатического расчета групп второго класса.
- •2. Группа 2-го вида
- •3.4.4 Аналитический метод кинетостатического
- •3.4.5 Кинетостатика ведущего звена.
- •3.4.4 Аналитический метод кинетостатического
- •Лекция 12. План лекции.
- •3.5.1 Трение в поступательных кинематических
- •3.5.2 Трение во вращательной кинематической паре.
- •3. 6. Передача работы и мощности. Кпд машин. Коэффициент потерь.
- •3.6.1 Кпд поступательной кинематической пары.
- •3.6.3. Определение кпд механизма.
- •3.6.4 Кпд соединенных машин.
- •3.7.1 Общие условия уравновешивание вращающихся масс.
- •3.7.2 Статическое уравновешивание.
- •Уравновешивание в общем случае или динамическое уравновешивание.
- •3.7.4 Статическая и динамическая балансировка вращающихся масс.
- •3.7.6. Уравновешивание шарнирного четырехзвенника.
- •3.8. Движение машин под действием заданных сил.
- •3.8.1. Режимы движения машины.
- •3.8.2. Характеристика внешних сил.
- •Кинетическая энергия звеньев и работа сил, действующих в машинах.
- •Приведение сил и масс .Динамические модели машины.
- •Определение приведенных моментов инерции и моментов сил кривошипно-ползунного механизма.
- •Приведение сил и масс. Динамические модели машины.
- •3.8.5 Определение приведенных моментов инерции и моментов сил кривошипно – ползунного механизма.
- •Лекция 16.
- •3.8.7. Уравнения движения машины в форме интеграла энергии.
- •3.8.8 Уравнения движения в дифференциальной форме.
- •Разрешим уравнение (3.57) относительно углового ускорения
- •3.8.13 Определение момента инерции маховика.
- •3.8.16 Уравнения движения машины с учетом упругости звеньев.
- •Тема 4. Общие методы синтеза механизмов. (4 часа).
- •План лекции
- •4. 1. Основные задачи и метода синтеза.
- •4. 2. Основные и дополнительные условия синтеза. Ограничения при синтезе.
- •4. 3. Методы оптимального синтеза.
- •4. 4. Синтез механизмов на основании заданной целевой функции.
- •4. 5. Интерполяционный метод синтеза механизмов.
- •Лекция 20.
- •4.6. Синтез механизмов методом наилучшего приближения функций.
- •4.7. Метод квадратичного приближения.
- •4.6. Синтез механизмов методом наилучшего приближения функций.
- •4.7. Метод квадратичного приближения.
- •Тема 5 Синтез плоских рычажных механизмов (4 часа) Лекция 21 План лекции
- •5.1 Основные условия и ограничения при синтезе.
- •5.2 Синтез четырехзвенного кривошипно-коромыслового. Механизма по трем положениям, аналитическим методом.
- •5.3 Синтез четырехзвенного кривошипно-коромыслового механизма по двум крайним положениям коромысла, коэффициенту изменения средней скорости и допускаемому углу давления.
- •5.1 Основные условия и ограничения при синтезе.
- •5.2 Синтез четырехзвенного кривошипно-ползунного коромыслового механизма по трем положениям аналитическим методом.
- •5.3 Синтез четырехзвенного кривошипно-коромыслового механизма по двум крайним положениям коромысла, коэффициенту изменения средней скорости и допускаемому углу давления.
- •План лекции
- •5.4.L Синтез кривошипно-коромыслового механизма.
- •5.4.2 Синтез кривошипно-ползунного механизма.
- •5.4.З Синтез кулисного механизма.
- •9.2. Фазы движения толкателя
- •9.3. Обоснование выбора закона движения
- •Лекция 24. План лекции.
- •6.4. Кинематический анализ кулачковых механизмов.
- •6.5 Синтез кулачковых механизмов.
- •6.6 Проектирование по кинематическим параметрам. Построение профиля кулачка при поступательном движении толкателя.
- •6.4 Проектирование по динамическим параметрам. Определение текущих углов давления. Аналог скорости
- •Лекция 25 План лекции.
- •6.10. Графическое определение текущих углов давления.
- •6.11 Аналитический метод определения основных размеров кулачкового механизма по заданному допускаемое углу давления.
- •6.12. Силовой расчет кулачкового механизма.
- •Глава 7. Синтез зубчатых зацеплений. (12 часов).
- •7.2. Основная теорема зацепления. Полюс зацепления. Центроиды колес.
- •7.3. Цилиндрическая эвольвентная зубчатая передача..
- •7.1 Виды зубчатых механизмов
- •7.2. Основная теорема зацепления. Полюс зацепления. Центроиды колес.
- •7.3. Цилиндрическая эвольвентная зубчатая передача.
- •Окружность
- •Окружность
- •5. Эвольвента - кривая без перегибо Лекция 27. План лекции
- •7.4. Элементы эвольвентного зубчатого колеса
- •Элементы и свойства эвольвентного зацепления
- •7.6 Коэффициент перекрытия
- •7.4. Элементы эвольвентного зубчатого колеса
- •7.5 Элементы и свойства эвольвентного зацепления
- •7.6. Коэффициент перекрытия
- •Лекция 28. План лекции
- •7.7. Интерференция зубьев. Условие отсутствия заклинивания
- •7.8. Внутреннее зацепление (рис.7.9)
- •7.9. Реечное зацепление (рис.7.10)
- •7.10. Изготовление зубчатых колес.
- •Лекция 29. План лекции
- •Смещение исходного контура и его влияние на форму нарезаемых зубьев.
- •Определение размеров колеса
- •7.14. Толщина зуба по произвольной окружности.Условие отсутствия заострения
- •7.15. Условие отсутствия подрезания
- •7.16 Эвольвентное беззазорное зацепление. Определение межосевого расстояния и угла зацепления. Воспринимаемое и уравнительное смещение.
- •7.17 Проектирование зубчатых передач. Выбор коэффициента смещения.
- •7.18 Косозубая цилиндрическая передача,
- •7.17 Проектирование зубчатых передач. Выбор коэффициента смещения.
- •7.18 Косозубая цилиндрическая передача.
- •7.21 Передачи с перекрещивающимися осями.
- •7.21.1 Винтовая передача.
- •7.21.2 Червячная передача.
- •Тема 8. Синтез механизмов с подвижными осями. Лекция 32.
- •Кинематическое исследование планетарных механизмов графическим методом Куцбаха – Смирнова.
- •Тема 9. Основы теории машин - автоматов. ( 4 часа)
- •План лекции:
- •9.1.2. Управление от копиров.
- •9.1.3. Следящий привод.
- •Промышленные роботы
- •9.3. Рабочий объем манипулятора и классификация движений захвата
- •9.4. Влияние расположения кинематических пар манипулятора на его маневренность
- •9.5 Структурный синтез манипуляторов
- •9.6 Зоны обслуживания, угол и коэффициент
- •Список литературы.
2.3.1 Построение планов скоростей.
Определяем
скорость точки А кривошипа по формуле
,
Здесь
- длина кривошипа ОА
в М.
Назначаем
полюс плана скоростей РV
и из него перпендикулярно кривошипу
ОА откладываем отрезок PV
a (рис2.8),
представляющий
собой вектор скорости точки А при
масштабном коэффициенте плана скоростей
.
который
определяется выражением
где
-длина вектора в мм на плане скоростей.
Для определения скорости точки В движение шатуна разложим на переносное поступательное со скоростью точки А и относительное вращательное вокруг этой точки. Такое разложение движения описывается векторным уравнением.
Р
ис
2. 7
Схема кривошипно - ползунного механизма
Р
ис
2.
8 План
скоростей механизма
Рис 2. 9 План ускорений механизма
-
Величина
?
?
Направление
В
таблицу под уравнением внесены данные
о величине и направлении векторов.
Неизвестными
здесь являются величины векторов VB
и VBA
при известных их
направлениях. Такое
уравнение может быть решено графически
построением плана скоростей. Из полюса
PV
проводится направление вектора
,
а из конца вектора
скорости точки А - направление вектора
.
На пересечении
этих прямых находится конец вектора
скорости точки В (точка В плана скоростей).
Теперь можно найти скорость любой другой точки. Например, для скорости точки С можно записать два векторных уравнения:
,
Проведя из точек а и в плана скоростей прямые, перпендикулярные отрезки АВ и ВС шатуна найдем конец вектора скорости точки С, начало его лежит в полюсе РV.
Величины скоростей точек А, В, С в м/с определяются выражениями:
Таким образом, если у звена известны величина и направление скорости одной точки и направление скорости (траектория) другой точки, то можно определить скорость любой его точки.
Свойства планов скоростей.
Началом векторов абсолютных скоростей является одна точка PV - полюс плана скоростей. Вытекает из определения.
2.
Отрезки,
соединяющие
концы векторов абсолютных скоростей,
при принятом масштабном коэффициенте
представляют относительные скорости
точек.
Из
треугольника
на плане скоростей имеем векторное
уравнение
Подставив
сюда
и
,
получим
или
.
С другой стороны
Сравнивая
два последних уравнения, убеждаемся,
что
,
что и требовалось доказать.
Зная относительную скорость каких либо двух точек звена, нетрудно определить его угловую скорость по величине и направлению. Например, величина угловой скорости шатуна равна
Для
определения направления угловой скорости
показываем вектор
выходящим из точки В на звене 2,
которое совершает
относительное вращение вокруг точки
А. Он
показывает, что
в нашем примере
направлена против
часовой стрелки.
3. Одноименные фигуры на звене и плане скоростей подобны, а одноименные отрезки пропорциональны и повернуты на 90° в сторону вращения звена.
В нашем примере соответственно перпендикулярны одноименные стороны треугольников АВС на шатуне и АВС на плане скоростей, следовательно, эти треугольники подобны.
Свойство
подобия одноименных фигур позволяет
определять скорости любых точек звена
не из уравнений, а
графически построением подобных
фигур. Так,
для определения
скорости точки С можно было не составлять
систему векторных уравнений,
а на стороне
ab
плана скоростей построить
авс подобный
АВС на шатуне. Обвод
контуров одноименных фигур должен
быть в одинаковом направлении. Так,
если
АВС на звене отводится в порядке букв
по часовой стрелке, то
и
авс плана скоростей должен также читаться
по часовой стрелке.
Проиллюстрируем применение свойства подобия одноименных фигур и пропорциональности одноименных отрезков на примере определения скорости точки S2 шатуна, расположенной внутри отрезка АВ. На плане скоростей она расположена также внутри отрезка ав и делит его в том же отношении, что и на звене, то есть
Скорость
точки
равна
4. Всем точкам, скорость которых равна 0, на плане скоростей отвечает одна точка-полюс PV. Так в полюсе можно проставить все неподвижные точки (например, точку 0), а также точки звеньев, совпадающие с их мгновенными центрами вращения.