
- •Кафедра химии
- •7. Термодинамические процессы идеальных газов 39
- •8. Второй закон термодинамики 50
- •15. Циклы тепловых двигателей с газообразным рабочим телом 116
- •16. Циклы газотурбинных установок 134
- •17. Теплосиловые паровые циклы 151
- •18. Циклы холодильных установок 169
- •Введение
- •1. Основные понятия и определения
- •1.1. Основные термодинамические параметры состояния
- •1.2. Термодинамическая система
- •1.3. Термодинамический процесс
- •1.4. Теплота и работа
- •1.5. Термодинамическое равновесие
- •Контрольные вопросы
- •2. Состояние идеального газа
- •2.1. Основные законы идеальных газов
- •2.2. Уравнение состояния идеального газа
- •Контрольные вопросы
- •3. Смесь идеальных газов
- •3.1. Основные свойства газовых смесей
- •4. Реальные газы
- •4.1. Уравнение состояния Ван-дер-Ваальса
- •4.2. Уравнение м. П. Вукаловича и и. И. Новикова
- •Контрольные вопросы
- •5. Первый закон термодинамики
- •5.1. Внутренняя энергия
- •5.2. Работа расширения
- •5.3. Теплота
- •5.4. Аналитическое выражение первого закона термодинамики
- •5.5. Энтальпия
- •Контрольные вопросы
- •6. Теплоемкость газов. Энтропия
- •6.1. Основные определения
- •6.2. Удельная (массовая), объемная и мольная теплоемкости газов
- •6.3. Теплоемкость в изохорном и изобарном процессах
- •6.4. Молекулярно-кинетическая и квантовая теории теплоемкости
- •6.5. Истинная и средняя теплоемкости
- •6.6. Зависимость теплоемкости от температуры
- •6.7. Отношение удельных теплоемкостей ср и сυ. Показатель адиабаты
- •6.8. Определение qp и qυ для идеальных газов
- •6.9. Теплоемкость смеси идеальных газов
- •6.10. Энтропия
- •Контрольные вопросы
- •7. Термодинамические процессы идеальных газов
- •7.1. Основные определения
- •7.2. Изохорный процесс
- •7.3. Изобарный процесс
- •7.4. Изотермический процесс
- •7.5. Адиабатный процесс
- •7.6. Политропные процессы
- •Контрольные вопросы
- •8. Второй закон термодинамики
- •8.1. Основные положения
- •8.2. Круговые термодинамические процессы (циклы)
- •8.3. Термический кпд и холодильный коэффициент циклов
- •8.4. Прямой обратимый цикл Карно
- •8.5. Обратный обратимый цикл Карно
- •8.6. Математическое выражение второго закона термодинамики
- •8.7. Изменение энтропии в обратимых и необратимых процессах
- •Контрольные вопросы
- •9. Характеристические функции и термодинамические потенциалы. Равновесие систем
- •9.1. Характеристические функции состояния
- •9.2. Физический смысл изохорно-изотермического и изобарно-изотермического потенциалов
- •9.3. Термодинамическое учение о равновесии
- •9.4. Общие условия равновесия термодинамической системы
- •Контрольные вопросы
- •10. Водяной пар
- •10.1. Основные понятия и определения
- •10.2. Р, υ-диаграмма водяного пара
- •10.3. T, s-диаграмма водяного пара
- •10.4. I, s-диаграмма водяного пара
- •Контрольные вопросы
- •11. Истечение газов и паров
- •11.1. Первый закон термодинамики в применении к потоку движущегося газа
- •11.2. Работа проталкивания
- •11.3. Располагаемая работа
- •11.4. Адиабатный процесс истечения
- •11.5. Истечение из суживающегося сопла
- •11.6. Истечение идеального газа из комбинированного сопла Лаваля
- •Контрольные вопросы
- •12. Дросселирование газов и паров
- •12.1. Дросселирование газа
- •12.2. Изменение удельной энтропии и температуры при дросселировании
- •12.3. Дросселирование водяного пара
- •Контрольные вопросы
- •13. Влажный воздух
- •13.1. Параметры состояния влажного воздуха
- •13.2. Диаграмма состояния влажного атмосферного воздуха
- •Контрольные вопросы
- •14. Компрессоры
- •14.1. Классификация компрессорных машин
- •14.2. Поршневой компрессор. Индикаторная диаграмма идеального поршневого компрессора
- •14.3. Индикаторная диаграмма реального поршневого компрессора
- •14.4. Определение количества теплоты, отведенной от газа при различных процессах сжатия
- •14.5. Мощность привода и кпд компрессора
- •14.6. Многоступенчатое сжатие газа
- •Охлаждающей воды; 4, 15, 26 – вход рабочего тела – газа; 7, 18, 29 – выход сжатого газа;
- •Контрольные вопросы
- •15. Циклы тепловых двигателей с газообразным рабочим телом
- •15.1. Циклы поршневых двигателей внутреннего сгорания (двс)
- •15.2. Циклы двс с подводом теплоты при постоянном объеме
- •В изохорном процессе от степени сжатия и показателя адиабаты
- •15.3. Цикл двс с подводом теплоты при постоянном давлении (цикл Дизеля)
- •15.4. Цикл двс со смешанным подводом теплоты (цикл Тринклера)
- •15.5. Сравнение циклов поршневых двигателей внутреннего сгорания
- •15.6. Цикл двигателя Стирлинга
- •Двигателя Стирлинга при повороте коленчатого вала:
- •Объемов; 6, 7 – действительное изменение объемов
- •Контрольные вопросы
- •16. Циклы газотурбинных установок
- •16.1. Цикл гту с подводом теплоты при постоянном давлении
- •От степени повышения давления в турбокомпрессоре
- •16.2. Цикл гту с подводом теплоты при постоянном объеме
- •16.3. Методы повышения термического кпд гту
- •16.4. Цикл гту с регенерацией теплоты
- •С регенерацией и с изобарным подводом теплоты
- •С изохорным подводом теплоты и регенерацией
- •16.5. Цикл с многоступенчатым сжатием воздуха и промежуточным охлаждением
- •Сжатием в компрессоре и с регенерацией: 1 – топливный насос; 2 – камера сгорания;
- •Сжимаемого воздуха, промежуточным подогревом рабочего тела, с подводом теплоты при постоянном давлении
- •Контрольные вопросы
- •17. Теплосиловые паровые циклы
- •17.1. Цикл Карно
- •17.2. Цикл Ренкина
- •17.3. Влияние основных параметров на кпд цикла Ренкина
- •17.3.1. Влияние начального давления пара
- •17.3.2. Влияние начальной температуры пара
- •При различных значениях t1
- •17.3.3. Влияние конечного давления в конденсаторе
- •17.4. Цикл с вторичным перегревом пара
- •17.5. Регенеративный цикл паротурбинной установки
- •17.6. Теплофикационные циклы
- •Контрольные вопросы
- •18. Циклы холодильных установок
- •18.1. Основные понятия о работе холодильных установок
- •18.2. Цикл воздушной холодильной установки
- •18.3. Цикл парокомпрессионной холодильной установки
- •18.4. Цикл пароэжекторной холодильной установки
- •18.5. Цикл абсорбционной холодильной установки
- •18.6. Тепловой насос
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Составители
С изохорным подводом теплоты и регенерацией
Процесс
регенерации 2–8
в этом цикле, так же, как и в цикле с
изобарным подводом теплоты, осуществляется
по изобарному процессу, что связно со
стремлением не усложнять конструкцию
теплообменника-регенератора. В связи
с этим воздух, сжатый адиабатно в
компрессоре 1–2,
а затем подогреваемый при
2–8
в теплообменнике-регенераторе, с
параметрами точки 8
поступает в камеру сгорания. За счет
сгорания топлива к рабочему телу в
изохорном процессе 8–4
подводится теплота
после
чего в газовой турбине происходит
адиабатное расширение 4–5
до давления окружающей среды
Перед выбросом в окружающую среду
отработавший газ проходит
теплообменник-регенератор, где, отдавая
теплоту сжатому воздуху, охлаждается
при
5–7.
Дальнейшее охлаждение 7–1
отработавших газов происходит в
окружающей среде.
Термический КПД цикла с изохорным подводом теплоты и с полной регенерацией
Для того чтобы эту зависимость записать через параметры цикла, необходимо, кроме уже известных параметров и , ввести степень подогрева регенерацией Т:
При полной
регенерации
Выразим температуры
в характерных точках цикла через
:
Тогда термический
КПД
.
В действительности процесса полной регенерации получить не удается, поэтому практически осуществляемые циклы с подводом теплоты при и с регенерацией имеют термические КПД меньшие, чем рассчитанные.
16.5. Цикл с многоступенчатым сжатием воздуха и промежуточным охлаждением
Термический КПД ГТУ можно также повысить, введя ступенчатый подогрев рабочего тела и ступенчатое сжатие воздуха в компрессоре с охлаждением между ступенями.
Схема газотурбинной установки, имеющей регенерацию, представлена на рис. 70, а цикл ГТУ с регенерацией, промежуточным охлаждением, подогревом рабочего тела и изобарным подводом теплоты – на рис. 71.
Рис. 70. Схема газотурбинной установки со ступенчатым сгоранием, ступенчатым
Сжатием в компрессоре и с регенерацией: 1 – топливный насос; 2 – камера сгорания;
3 – первая ступень газовой турбины; 4 – вторая ступень газовой турбины; 5 – камера сгорания; 6 – теплообменник–регенератор; 7 – компрессор второй ступени; 8 – компрессор первой ступени; 9 – теплообменник-холодильник; 10 – потребитель энергии
V
Рис. 71. Цикл ГТУ с регенерацией, промежуточным охлаждением
Сжимаемого воздуха, промежуточным подогревом рабочего тела, с подводом теплоты при постоянном давлении
Воздух, всасываемый из атмосферы, сжимается адиабатно 1–1' в первой ступени компрессора. Затем он попадает в теплообменник-холодильник, где охлаждается при постоянном давлении 1–1'' до первоначальной температуры и далее по адиабате 1''–2 сжимается во второй ступени компрессора. Сжатый воздух поступает в теплообменник регенератор, где подогревается по изобаре 2–8. Подогретый в регенераторе воздух попадает в камеру сгорания, в которой подогревается дополнительно за счет подвода теплоты по изобаре 8–4, от горячего источника теплоты (за счет сгорания топлива, поданного насосом). Рабочее тело с параметрами точки 4 подается в первую ступень газовой турбины, где происходит адиабатный процесс расширения 4–4'. Отработавшее в первой ступени рабочее тело вновь подается в камеру сгорания и по изобаре 4'–4'' подогревается до температуры в точке 4 за счет подвода теплоты Подогретое таким образом рабочее тело поступает на вторую ступень газовой турбины, где расширяется по адиабате 4''–5. Отработавшее в турбине рабочее тело поступает в теплообменник-регенератор, где отдает теплоту проходящему по змеевику воздуху по изобаре 5–7, выбрасывается в атмосферу и охлаждается по изобаре 7–1. Выработанная установкой энергия используется потребителем.
Ч
ем
больше промежуточных ступеней подогрева
и охлаждения, тем выше термический КПД
цикла. Действительно, если представить,
что в цикле, показанном на рис. 72, в
процессе
2–3
теплота подводится к рабочему телу
только за счет охлаждения рабочего тела
в процессе 4–1,
то в силу эквидистантности процессов
эти теплоты не должны учитываться при
определении термического КПД цикла.
Для определения
КПД цикла ГТУ с большим числом ступеней
сжатия и сгорания представим приближенно
теплоты
(теплоту, подведенную к рабочему телу
в процессе 3–4)
и
(теплоту, отведенную от рабочего тела
в процессе 1–2)
в виде
где
,
– изменение
энтропии в соответствующих процессах.Тогда
термический КПД такого цикла будет
равен
.
Ввиду эквидистантности кривых 2–3 и 4–1
,
отсюда
.