
- •Кафедра химии
- •7. Термодинамические процессы идеальных газов 39
- •8. Второй закон термодинамики 50
- •15. Циклы тепловых двигателей с газообразным рабочим телом 116
- •16. Циклы газотурбинных установок 134
- •17. Теплосиловые паровые циклы 151
- •18. Циклы холодильных установок 169
- •Введение
- •1. Основные понятия и определения
- •1.1. Основные термодинамические параметры состояния
- •1.2. Термодинамическая система
- •1.3. Термодинамический процесс
- •1.4. Теплота и работа
- •1.5. Термодинамическое равновесие
- •Контрольные вопросы
- •2. Состояние идеального газа
- •2.1. Основные законы идеальных газов
- •2.2. Уравнение состояния идеального газа
- •Контрольные вопросы
- •3. Смесь идеальных газов
- •3.1. Основные свойства газовых смесей
- •4. Реальные газы
- •4.1. Уравнение состояния Ван-дер-Ваальса
- •4.2. Уравнение м. П. Вукаловича и и. И. Новикова
- •Контрольные вопросы
- •5. Первый закон термодинамики
- •5.1. Внутренняя энергия
- •5.2. Работа расширения
- •5.3. Теплота
- •5.4. Аналитическое выражение первого закона термодинамики
- •5.5. Энтальпия
- •Контрольные вопросы
- •6. Теплоемкость газов. Энтропия
- •6.1. Основные определения
- •6.2. Удельная (массовая), объемная и мольная теплоемкости газов
- •6.3. Теплоемкость в изохорном и изобарном процессах
- •6.4. Молекулярно-кинетическая и квантовая теории теплоемкости
- •6.5. Истинная и средняя теплоемкости
- •6.6. Зависимость теплоемкости от температуры
- •6.7. Отношение удельных теплоемкостей ср и сυ. Показатель адиабаты
- •6.8. Определение qp и qυ для идеальных газов
- •6.9. Теплоемкость смеси идеальных газов
- •6.10. Энтропия
- •Контрольные вопросы
- •7. Термодинамические процессы идеальных газов
- •7.1. Основные определения
- •7.2. Изохорный процесс
- •7.3. Изобарный процесс
- •7.4. Изотермический процесс
- •7.5. Адиабатный процесс
- •7.6. Политропные процессы
- •Контрольные вопросы
- •8. Второй закон термодинамики
- •8.1. Основные положения
- •8.2. Круговые термодинамические процессы (циклы)
- •8.3. Термический кпд и холодильный коэффициент циклов
- •8.4. Прямой обратимый цикл Карно
- •8.5. Обратный обратимый цикл Карно
- •8.6. Математическое выражение второго закона термодинамики
- •8.7. Изменение энтропии в обратимых и необратимых процессах
- •Контрольные вопросы
- •9. Характеристические функции и термодинамические потенциалы. Равновесие систем
- •9.1. Характеристические функции состояния
- •9.2. Физический смысл изохорно-изотермического и изобарно-изотермического потенциалов
- •9.3. Термодинамическое учение о равновесии
- •9.4. Общие условия равновесия термодинамической системы
- •Контрольные вопросы
- •10. Водяной пар
- •10.1. Основные понятия и определения
- •10.2. Р, υ-диаграмма водяного пара
- •10.3. T, s-диаграмма водяного пара
- •10.4. I, s-диаграмма водяного пара
- •Контрольные вопросы
- •11. Истечение газов и паров
- •11.1. Первый закон термодинамики в применении к потоку движущегося газа
- •11.2. Работа проталкивания
- •11.3. Располагаемая работа
- •11.4. Адиабатный процесс истечения
- •11.5. Истечение из суживающегося сопла
- •11.6. Истечение идеального газа из комбинированного сопла Лаваля
- •Контрольные вопросы
- •12. Дросселирование газов и паров
- •12.1. Дросселирование газа
- •12.2. Изменение удельной энтропии и температуры при дросселировании
- •12.3. Дросселирование водяного пара
- •Контрольные вопросы
- •13. Влажный воздух
- •13.1. Параметры состояния влажного воздуха
- •13.2. Диаграмма состояния влажного атмосферного воздуха
- •Контрольные вопросы
- •14. Компрессоры
- •14.1. Классификация компрессорных машин
- •14.2. Поршневой компрессор. Индикаторная диаграмма идеального поршневого компрессора
- •14.3. Индикаторная диаграмма реального поршневого компрессора
- •14.4. Определение количества теплоты, отведенной от газа при различных процессах сжатия
- •14.5. Мощность привода и кпд компрессора
- •14.6. Многоступенчатое сжатие газа
- •Охлаждающей воды; 4, 15, 26 – вход рабочего тела – газа; 7, 18, 29 – выход сжатого газа;
- •Контрольные вопросы
- •15. Циклы тепловых двигателей с газообразным рабочим телом
- •15.1. Циклы поршневых двигателей внутреннего сгорания (двс)
- •15.2. Циклы двс с подводом теплоты при постоянном объеме
- •В изохорном процессе от степени сжатия и показателя адиабаты
- •15.3. Цикл двс с подводом теплоты при постоянном давлении (цикл Дизеля)
- •15.4. Цикл двс со смешанным подводом теплоты (цикл Тринклера)
- •15.5. Сравнение циклов поршневых двигателей внутреннего сгорания
- •15.6. Цикл двигателя Стирлинга
- •Двигателя Стирлинга при повороте коленчатого вала:
- •Объемов; 6, 7 – действительное изменение объемов
- •Контрольные вопросы
- •16. Циклы газотурбинных установок
- •16.1. Цикл гту с подводом теплоты при постоянном давлении
- •От степени повышения давления в турбокомпрессоре
- •16.2. Цикл гту с подводом теплоты при постоянном объеме
- •16.3. Методы повышения термического кпд гту
- •16.4. Цикл гту с регенерацией теплоты
- •С регенерацией и с изобарным подводом теплоты
- •С изохорным подводом теплоты и регенерацией
- •16.5. Цикл с многоступенчатым сжатием воздуха и промежуточным охлаждением
- •Сжатием в компрессоре и с регенерацией: 1 – топливный насос; 2 – камера сгорания;
- •Сжимаемого воздуха, промежуточным подогревом рабочего тела, с подводом теплоты при постоянном давлении
- •Контрольные вопросы
- •17. Теплосиловые паровые циклы
- •17.1. Цикл Карно
- •17.2. Цикл Ренкина
- •17.3. Влияние основных параметров на кпд цикла Ренкина
- •17.3.1. Влияние начального давления пара
- •17.3.2. Влияние начальной температуры пара
- •При различных значениях t1
- •17.3.3. Влияние конечного давления в конденсаторе
- •17.4. Цикл с вторичным перегревом пара
- •17.5. Регенеративный цикл паротурбинной установки
- •17.6. Теплофикационные циклы
- •Контрольные вопросы
- •18. Циклы холодильных установок
- •18.1. Основные понятия о работе холодильных установок
- •18.2. Цикл воздушной холодильной установки
- •18.3. Цикл парокомпрессионной холодильной установки
- •18.4. Цикл пароэжекторной холодильной установки
- •18.5. Цикл абсорбционной холодильной установки
- •18.6. Тепловой насос
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Составители
1.2. Термодинамическая система
В любом явлении участвуют множество различных тел, связанных между собой. При термодинамическом изучении какого-либо явления в качестве объекта изучения выделяется группа тел, или единичное тело, или даже отдельные его части. Объект изучения называется термодинамической системой. Все, что окружает термодинамическую систему, называется окружающей средой. Термодинамическая система – совокупность макроскопических тел, обменивающихся энергией как друг с другом, так и с окружающей средой. Пример: газ, находящийся в цилиндре с поршнем, – термодинамическая система. Цилиндр и поршень, воздух, который окружает их, стены помещения, где находится цилиндр с поршнем и т. д. – окружающая среда.
Виды систем
По степени обмена веществом и энергией:
1) изолированная – нет взаимодействия с окружающей средой. Пример: термос;
2) закрытая – обменивается только энергией. Пример: батарея;
3) открытая – обменивается с окружающей средой и веществом, и энергией. Пример: стакан, наполненный водным раствором соли.
Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделенная от других частей системы видимой поверхностью раздела. Фаза может быть твердой, жидкой и газообразной.
По наличию границы раздела фаз:
1) гомогенная – система, внутри которой нет поверхностей, разделяющих отличающиеся по своим свойствам части системы (фазы). Пример: идеальный газ или раствор поваренной соли.
Если во всех точках система имеет одинаковый состав и физические свойства одинаковы, то система называется физически однородной.
2) гетерогенная – система, внутри которой присутствует поверхность, разделяющая отличающиеся по свойствам части системы. Пример: вода и бензол, взвешенные частицы в жидкости, система из воды и льда.
1.3. Термодинамический процесс
Основные термодинамические параметры состояния р, υ и Т однородного тела зависят друг от друга и связаны соотношением
F (p, , T) = 0 – уравнение состояния.
Если известно уравнение состояния, то для определения состояния простейших систем – однородных и постоянных по времени, по массе и по составу (состоящих из одной фазы и не изменяющихся химически) – достаточно знать две независимые переменные из трех: p = f1 (, T); = f2 (p, T); T = f3 (, p).
Если внешние условия меняются, то меняется и состояние системы. Совокупность изменений состояния термодинамической системы при переходе из одного равновесного состояния в другое называется термодинамическим процессом.
Равновесное состояние – состояние системы, в котором во всех ее точках давление, температура, удельный объем и другие физические параметры одинаковы.
Равновесный термодинамический процесс – процесс, проходящий через равновесные состояния.
Термодинамика в первую очередь рассматривает равновесные состояния и процессы изменения состояния термодинамической системы. Равновесный процесс осуществляется только в случае бесконечно медленного изменения параметров внешней среды или когда изменения параметров системы малы по сравнению со значениями этих параметров. Реальные процессы – неравновесные, поскольку под влиянием внешних условий они протекают с конечными скоростями, и равновесное состояние не успевает устанавливаться.
С математической точки зрения, уравнение состояния выражает некоторую поверхность – термодинамическую поверхность. Произвольно взятое равновесное состояние – это точка на термодинамической поверхности, а совокупность этих точек при непрерывном изменении состояния – кривая, которая является графическим отображением равновесного процесса.
Параметры состояния системы могут быть:
1) экстенсивные – параметры, значения которых пропорциональны массе системы (объем, энергия, энтропия и др.);
2) интенсивные – параметры, не зависящие от массы системы (р, Т и др.).
Экстенсивные параметры подчиняются закону аддитивности, а интенсивные нет. Измерение экстенсивной величины – это сравнение ее с другой, однородной с ней величиной (длины с длиной, объема с объемом). Измерение интенсивной величины состоит в использовании объективной связи между изменением интенсивной и экстенсивной величины (для измерения температуры используется термометр, который фиксирует интенсивную величину – температуру путем измерения экстенсивной величины – объема ртути).