
- •Кафедра химии
- •7. Термодинамические процессы идеальных газов 39
- •8. Второй закон термодинамики 50
- •15. Циклы тепловых двигателей с газообразным рабочим телом 116
- •16. Циклы газотурбинных установок 134
- •17. Теплосиловые паровые циклы 151
- •18. Циклы холодильных установок 169
- •Введение
- •1. Основные понятия и определения
- •1.1. Основные термодинамические параметры состояния
- •1.2. Термодинамическая система
- •1.3. Термодинамический процесс
- •1.4. Теплота и работа
- •1.5. Термодинамическое равновесие
- •Контрольные вопросы
- •2. Состояние идеального газа
- •2.1. Основные законы идеальных газов
- •2.2. Уравнение состояния идеального газа
- •Контрольные вопросы
- •3. Смесь идеальных газов
- •3.1. Основные свойства газовых смесей
- •4. Реальные газы
- •4.1. Уравнение состояния Ван-дер-Ваальса
- •4.2. Уравнение м. П. Вукаловича и и. И. Новикова
- •Контрольные вопросы
- •5. Первый закон термодинамики
- •5.1. Внутренняя энергия
- •5.2. Работа расширения
- •5.3. Теплота
- •5.4. Аналитическое выражение первого закона термодинамики
- •5.5. Энтальпия
- •Контрольные вопросы
- •6. Теплоемкость газов. Энтропия
- •6.1. Основные определения
- •6.2. Удельная (массовая), объемная и мольная теплоемкости газов
- •6.3. Теплоемкость в изохорном и изобарном процессах
- •6.4. Молекулярно-кинетическая и квантовая теории теплоемкости
- •6.5. Истинная и средняя теплоемкости
- •6.6. Зависимость теплоемкости от температуры
- •6.7. Отношение удельных теплоемкостей ср и сυ. Показатель адиабаты
- •6.8. Определение qp и qυ для идеальных газов
- •6.9. Теплоемкость смеси идеальных газов
- •6.10. Энтропия
- •Контрольные вопросы
- •7. Термодинамические процессы идеальных газов
- •7.1. Основные определения
- •7.2. Изохорный процесс
- •7.3. Изобарный процесс
- •7.4. Изотермический процесс
- •7.5. Адиабатный процесс
- •7.6. Политропные процессы
- •Контрольные вопросы
- •8. Второй закон термодинамики
- •8.1. Основные положения
- •8.2. Круговые термодинамические процессы (циклы)
- •8.3. Термический кпд и холодильный коэффициент циклов
- •8.4. Прямой обратимый цикл Карно
- •8.5. Обратный обратимый цикл Карно
- •8.6. Математическое выражение второго закона термодинамики
- •8.7. Изменение энтропии в обратимых и необратимых процессах
- •Контрольные вопросы
- •9. Характеристические функции и термодинамические потенциалы. Равновесие систем
- •9.1. Характеристические функции состояния
- •9.2. Физический смысл изохорно-изотермического и изобарно-изотермического потенциалов
- •9.3. Термодинамическое учение о равновесии
- •9.4. Общие условия равновесия термодинамической системы
- •Контрольные вопросы
- •10. Водяной пар
- •10.1. Основные понятия и определения
- •10.2. Р, υ-диаграмма водяного пара
- •10.3. T, s-диаграмма водяного пара
- •10.4. I, s-диаграмма водяного пара
- •Контрольные вопросы
- •11. Истечение газов и паров
- •11.1. Первый закон термодинамики в применении к потоку движущегося газа
- •11.2. Работа проталкивания
- •11.3. Располагаемая работа
- •11.4. Адиабатный процесс истечения
- •11.5. Истечение из суживающегося сопла
- •11.6. Истечение идеального газа из комбинированного сопла Лаваля
- •Контрольные вопросы
- •12. Дросселирование газов и паров
- •12.1. Дросселирование газа
- •12.2. Изменение удельной энтропии и температуры при дросселировании
- •12.3. Дросселирование водяного пара
- •Контрольные вопросы
- •13. Влажный воздух
- •13.1. Параметры состояния влажного воздуха
- •13.2. Диаграмма состояния влажного атмосферного воздуха
- •Контрольные вопросы
- •14. Компрессоры
- •14.1. Классификация компрессорных машин
- •14.2. Поршневой компрессор. Индикаторная диаграмма идеального поршневого компрессора
- •14.3. Индикаторная диаграмма реального поршневого компрессора
- •14.4. Определение количества теплоты, отведенной от газа при различных процессах сжатия
- •14.5. Мощность привода и кпд компрессора
- •14.6. Многоступенчатое сжатие газа
- •Охлаждающей воды; 4, 15, 26 – вход рабочего тела – газа; 7, 18, 29 – выход сжатого газа;
- •Контрольные вопросы
- •15. Циклы тепловых двигателей с газообразным рабочим телом
- •15.1. Циклы поршневых двигателей внутреннего сгорания (двс)
- •15.2. Циклы двс с подводом теплоты при постоянном объеме
- •В изохорном процессе от степени сжатия и показателя адиабаты
- •15.3. Цикл двс с подводом теплоты при постоянном давлении (цикл Дизеля)
- •15.4. Цикл двс со смешанным подводом теплоты (цикл Тринклера)
- •15.5. Сравнение циклов поршневых двигателей внутреннего сгорания
- •15.6. Цикл двигателя Стирлинга
- •Двигателя Стирлинга при повороте коленчатого вала:
- •Объемов; 6, 7 – действительное изменение объемов
- •Контрольные вопросы
- •16. Циклы газотурбинных установок
- •16.1. Цикл гту с подводом теплоты при постоянном давлении
- •От степени повышения давления в турбокомпрессоре
- •16.2. Цикл гту с подводом теплоты при постоянном объеме
- •16.3. Методы повышения термического кпд гту
- •16.4. Цикл гту с регенерацией теплоты
- •С регенерацией и с изобарным подводом теплоты
- •С изохорным подводом теплоты и регенерацией
- •16.5. Цикл с многоступенчатым сжатием воздуха и промежуточным охлаждением
- •Сжатием в компрессоре и с регенерацией: 1 – топливный насос; 2 – камера сгорания;
- •Сжимаемого воздуха, промежуточным подогревом рабочего тела, с подводом теплоты при постоянном давлении
- •Контрольные вопросы
- •17. Теплосиловые паровые циклы
- •17.1. Цикл Карно
- •17.2. Цикл Ренкина
- •17.3. Влияние основных параметров на кпд цикла Ренкина
- •17.3.1. Влияние начального давления пара
- •17.3.2. Влияние начальной температуры пара
- •При различных значениях t1
- •17.3.3. Влияние конечного давления в конденсаторе
- •17.4. Цикл с вторичным перегревом пара
- •17.5. Регенеративный цикл паротурбинной установки
- •17.6. Теплофикационные циклы
- •Контрольные вопросы
- •18. Циклы холодильных установок
- •18.1. Основные понятия о работе холодильных установок
- •18.2. Цикл воздушной холодильной установки
- •18.3. Цикл парокомпрессионной холодильной установки
- •18.4. Цикл пароэжекторной холодильной установки
- •18.5. Цикл абсорбционной холодильной установки
- •18.6. Тепловой насос
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Составители
12.2. Изменение удельной энтропии и температуры при дросселировании
Дросселирование является необратимым процессом, так как часть энергии потока теряется на его завихрение перед диафрагмой и за ней и преобразуется в теплоту, которая при адиабатном течении передается рабочему телу. Если представить процесс, идущий в обратном направлении (например, в трубе, изображенной на рис. 34, изменить направление течения газа на обратное), то он по-прежнему будет сопровождаться падением давления при протекании газа через дроссель. Изменение удельной энтропии газа:
,
его можно записать
в виде:
,
.
Такая запись
является наиболее удобной, так как
.
Из последнего уравнения следует, что
всегда
.
Для определения
изменения температуры в процессе
адиабатного дросселирования необходимо
знать значение производной
Из соотношения
с учетом
соотношений
,
получим
.
Величина
называется коэффициентом
адиабатного дросселирования
или дифференциальным
дроссель-эффектом,
его обозначают
В общем
случае величина
отлична от нуля.
Явление изменения
температуры газов и жидкостей при
адиабатном дросселировании называется
эффектом
Джоуля – Томсона.
Измеряя дифференциальный дроссель-эффект
(весьма малую конечную разность температур
при такого же порядка разности давлений
по обе стороны дросселя
),
можно по результатам этих измерений
найти величину
,
затем построить
i, Т-диаграмму
исследуемого вещества, определить
удельную теплоемкость
,
удельный объем и т. д.
Изменение температуры газа (жидкости) при значительном перепаде давлений на дросселе называется интегральным дроссель-эффектом, он вычисляется из соотношения
где
,
– температуры
дросселируемого вещества соответственно
перед дросселем и за ним.
Интегральный
дроссель-эффект может достигать весьма
большой величины. Например, при
дросселировании водяного пара от
давления
и температуры 450 С
до давления, равного
,
температура пара уменьшается до 180 С,
т. е. на 270 С.
Рис. 35. i, Т-диаграмма |
Определение
величины интегрального адиабатного
дроссель-эффекта удобно выполнять с
помощью i,
Т-диаграммы
дросселируемого вещества (рис. 35).
Если известно состояние газа перед
дросселем, т. е. его давление
|
Знак дроссель-эффекта
Проанализируем
соотношение
.
Поскольку всегда
,
то знак коэффициента
определяется
знаком стоящей в числителе правой части
уравнения.
Очевидно, что если
,
то
,
и тогда температура дросселируемого
вещества возрастает.
Если
,
то
,
и тогда температура дросселируемого
вещества уменьшается.
Если
,
то
,
и тогда температура дросселируемого
вещества не меняется. Для идеального
газа характерно
,
тогда идеальный газ дросселируется без
изменения температуры.
Таким образом, для газа, подчиняющегося уравнению Ван-дер-Ваальса, эффект Джоуля – Томсона не равен нулю.
Как показывает
опыт, для одного и того же вещества
оказывается
различным в зависимости от области
состояния. Состояние газа (жидкости), в
котором
равен нулю, называется точкой
инверсии
эффекта Джоуля – Томсона. Геометрическое
место точек инверсии на диаграмме
состояния данного вещества называется
кривой
инверсии.
Точки на кривой инверсии удовлетворяют
уравнению
.
Пользуясь этим условием, можно найти
кривую инверсии с помощью уравнения
состояния вещества.
Рис. 36. Кривая инверсии азота |
В качестве
примера на рис. 36 приведена кривая
инверсии азота в p,
t-диаграмме.
Внутри области, ограниченной кривой
инверсии
Процесс
дросселирования используют для
регулирования работы паросиловых
установок, так как с увеличением
дросселирования уменьшаются расход
рабочего тела и располагаемая работа
(теплоперепад). Действительно, если
без дросселирования располагаемая
работа равна
|
при наличии
процесса 1–b
располагаемая работа уменьшается и
становится равной
|
Рис. 37. Дросселирование водяного пара перед паровой турбиной |