
- •Кафедра химии
- •7. Термодинамические процессы идеальных газов 39
- •8. Второй закон термодинамики 50
- •15. Циклы тепловых двигателей с газообразным рабочим телом 116
- •16. Циклы газотурбинных установок 134
- •17. Теплосиловые паровые циклы 151
- •18. Циклы холодильных установок 169
- •Введение
- •1. Основные понятия и определения
- •1.1. Основные термодинамические параметры состояния
- •1.2. Термодинамическая система
- •1.3. Термодинамический процесс
- •1.4. Теплота и работа
- •1.5. Термодинамическое равновесие
- •Контрольные вопросы
- •2. Состояние идеального газа
- •2.1. Основные законы идеальных газов
- •2.2. Уравнение состояния идеального газа
- •Контрольные вопросы
- •3. Смесь идеальных газов
- •3.1. Основные свойства газовых смесей
- •4. Реальные газы
- •4.1. Уравнение состояния Ван-дер-Ваальса
- •4.2. Уравнение м. П. Вукаловича и и. И. Новикова
- •Контрольные вопросы
- •5. Первый закон термодинамики
- •5.1. Внутренняя энергия
- •5.2. Работа расширения
- •5.3. Теплота
- •5.4. Аналитическое выражение первого закона термодинамики
- •5.5. Энтальпия
- •Контрольные вопросы
- •6. Теплоемкость газов. Энтропия
- •6.1. Основные определения
- •6.2. Удельная (массовая), объемная и мольная теплоемкости газов
- •6.3. Теплоемкость в изохорном и изобарном процессах
- •6.4. Молекулярно-кинетическая и квантовая теории теплоемкости
- •6.5. Истинная и средняя теплоемкости
- •6.6. Зависимость теплоемкости от температуры
- •6.7. Отношение удельных теплоемкостей ср и сυ. Показатель адиабаты
- •6.8. Определение qp и qυ для идеальных газов
- •6.9. Теплоемкость смеси идеальных газов
- •6.10. Энтропия
- •Контрольные вопросы
- •7. Термодинамические процессы идеальных газов
- •7.1. Основные определения
- •7.2. Изохорный процесс
- •7.3. Изобарный процесс
- •7.4. Изотермический процесс
- •7.5. Адиабатный процесс
- •7.6. Политропные процессы
- •Контрольные вопросы
- •8. Второй закон термодинамики
- •8.1. Основные положения
- •8.2. Круговые термодинамические процессы (циклы)
- •8.3. Термический кпд и холодильный коэффициент циклов
- •8.4. Прямой обратимый цикл Карно
- •8.5. Обратный обратимый цикл Карно
- •8.6. Математическое выражение второго закона термодинамики
- •8.7. Изменение энтропии в обратимых и необратимых процессах
- •Контрольные вопросы
- •9. Характеристические функции и термодинамические потенциалы. Равновесие систем
- •9.1. Характеристические функции состояния
- •9.2. Физический смысл изохорно-изотермического и изобарно-изотермического потенциалов
- •9.3. Термодинамическое учение о равновесии
- •9.4. Общие условия равновесия термодинамической системы
- •Контрольные вопросы
- •10. Водяной пар
- •10.1. Основные понятия и определения
- •10.2. Р, υ-диаграмма водяного пара
- •10.3. T, s-диаграмма водяного пара
- •10.4. I, s-диаграмма водяного пара
- •Контрольные вопросы
- •11. Истечение газов и паров
- •11.1. Первый закон термодинамики в применении к потоку движущегося газа
- •11.2. Работа проталкивания
- •11.3. Располагаемая работа
- •11.4. Адиабатный процесс истечения
- •11.5. Истечение из суживающегося сопла
- •11.6. Истечение идеального газа из комбинированного сопла Лаваля
- •Контрольные вопросы
- •12. Дросселирование газов и паров
- •12.1. Дросселирование газа
- •12.2. Изменение удельной энтропии и температуры при дросселировании
- •12.3. Дросселирование водяного пара
- •Контрольные вопросы
- •13. Влажный воздух
- •13.1. Параметры состояния влажного воздуха
- •13.2. Диаграмма состояния влажного атмосферного воздуха
- •Контрольные вопросы
- •14. Компрессоры
- •14.1. Классификация компрессорных машин
- •14.2. Поршневой компрессор. Индикаторная диаграмма идеального поршневого компрессора
- •14.3. Индикаторная диаграмма реального поршневого компрессора
- •14.4. Определение количества теплоты, отведенной от газа при различных процессах сжатия
- •14.5. Мощность привода и кпд компрессора
- •14.6. Многоступенчатое сжатие газа
- •Охлаждающей воды; 4, 15, 26 – вход рабочего тела – газа; 7, 18, 29 – выход сжатого газа;
- •Контрольные вопросы
- •15. Циклы тепловых двигателей с газообразным рабочим телом
- •15.1. Циклы поршневых двигателей внутреннего сгорания (двс)
- •15.2. Циклы двс с подводом теплоты при постоянном объеме
- •В изохорном процессе от степени сжатия и показателя адиабаты
- •15.3. Цикл двс с подводом теплоты при постоянном давлении (цикл Дизеля)
- •15.4. Цикл двс со смешанным подводом теплоты (цикл Тринклера)
- •15.5. Сравнение циклов поршневых двигателей внутреннего сгорания
- •15.6. Цикл двигателя Стирлинга
- •Двигателя Стирлинга при повороте коленчатого вала:
- •Объемов; 6, 7 – действительное изменение объемов
- •Контрольные вопросы
- •16. Циклы газотурбинных установок
- •16.1. Цикл гту с подводом теплоты при постоянном давлении
- •От степени повышения давления в турбокомпрессоре
- •16.2. Цикл гту с подводом теплоты при постоянном объеме
- •16.3. Методы повышения термического кпд гту
- •16.4. Цикл гту с регенерацией теплоты
- •С регенерацией и с изобарным подводом теплоты
- •С изохорным подводом теплоты и регенерацией
- •16.5. Цикл с многоступенчатым сжатием воздуха и промежуточным охлаждением
- •Сжатием в компрессоре и с регенерацией: 1 – топливный насос; 2 – камера сгорания;
- •Сжимаемого воздуха, промежуточным подогревом рабочего тела, с подводом теплоты при постоянном давлении
- •Контрольные вопросы
- •17. Теплосиловые паровые циклы
- •17.1. Цикл Карно
- •17.2. Цикл Ренкина
- •17.3. Влияние основных параметров на кпд цикла Ренкина
- •17.3.1. Влияние начального давления пара
- •17.3.2. Влияние начальной температуры пара
- •При различных значениях t1
- •17.3.3. Влияние конечного давления в конденсаторе
- •17.4. Цикл с вторичным перегревом пара
- •17.5. Регенеративный цикл паротурбинной установки
- •17.6. Теплофикационные циклы
- •Контрольные вопросы
- •18. Циклы холодильных установок
- •18.1. Основные понятия о работе холодильных установок
- •18.2. Цикл воздушной холодильной установки
- •18.3. Цикл парокомпрессионной холодильной установки
- •18.4. Цикл пароэжекторной холодильной установки
- •18.5. Цикл абсорбционной холодильной установки
- •18.6. Тепловой насос
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Составители
8.4. Прямой обратимый цикл Карно
При осуществлении обратимого произвольного цикла количество источников теплоты можно уменьшить, если на определенных участках подводить и отводить теплоту при неизменной температуре, т. е. в изотермических процессах (рис. 20). Предельный случай: вся теплота подводится и отводится изотермически. В этом случае потребуется всего два источника теплоты постоянной температуры: один теплоотдатчик и один теплоприемник. Осуществляется прямой обратимый цикл при таких условиях следующим образом. Сначала в изотермическом процессе расширения теплота обратимо подводится к рабочему телу от теплоотдатчика с постоянной температурой.
З
атем
в обратимом адиабатном процессе
расширения, в котором отсутствует
теплообмен между рабочим телом и
источниками теплоты, температура
рабочего тела понижается до температуры
теплоприемника. Далее в обратимом
изотермическом процессе при температуре
теплоприемника происходит отвод теплоты
от рабочего тела к нему. Замыкающим цикл
процессом должен быть опять обратимый
адиабатный процесс, в котором при
отсутствии теплообмена температура
повышается до начальной и рабочее тело
возвращается в первоначальное состояние.
Таким образом, обратимый цикл,
осуществленный между двумя источниками
постоянной температуры, должен состоять
из двух обратимых изотермических и двух
обратимых адиабатных процессов.
Для лучшего понимания представим тепловую машину, цилиндр которой может быть по мере надобности и абсолютно теплопроводным, и абсолютно нетеплопроводным (рис. 21).
Рис. 21. Для понимания прямого обратимого цикла Карно
Газ (рабочее тело)
с начальными параметрами, характеризующимися
точкой а
(параметры рабочего тела р1,
υ1,
а температура Т1),
помещен в цилиндр под поршень, причем
боковые стенки цилиндра и поршень
абсолютно нетеплопроводны, так что
теплота может передаваться только через
основание цилиндра (изотерма
12, рис. 20).
Вводим цилиндр в соприкосновение с
горячим источником теплоты. Расширяясь
изотермически при температуре Т1
от объема υa
до объема
υb,
газ забирает
от горючего источника теплоту
.
Параметры точки 2:
р2,
υ2,
Т1.
В точке b
подвод теплоты прекращаем и ставим
цилиндр на теплоизолятор. Дальнейшее
расширение рабочего тела происходит
адиабатно. Работа расширения совершается
при этом только за счет внутренней
энергии, в результате чего температура
газа падает до Т2
(изотерма
23, рис. 20).
Параметры точки 3:
р3,
υ3,
Т2.
Теперь возвратим тело в начальное состояние. Для этого сначала поместим цилиндр на холодный источник с температурой Т2 и будем сжимать рабочее тело по изотерме 34 (рис. 20), совершая работу l2 и отводя при этом к нижнему источнику от рабочего тела теплоту:
Затем снова поставим цилиндр на теплоизолятор и дальнейшее сжатие проведем в адиабатных условиях. Работа, затраченная на сжатие по линии 41, рис. 20, идет на увеличение внутренней энергии, в результате чего температура газа увеличивается до Т1.
Параметры точки 4: р4, υ4, Т2.
Таким образом, за
весь цикл рабочему телу от теплоотдатчика
было сообщено удельное количество
теплоты q1
и отведено в теплоприемник удельное
количество теплоты q2.
Термический КПД цикла:
Подставляя,
найденные значения q1
и q2
в уравнение для термического КПД и
преобразуя, получим:
Таким образом, термический КПД обратимого цикла Карно зависит только от абсолютных температур теплоотдатчика и теплоприемника. Он будет тем больше, чем выше температура теплоотдатчика и чем меньше температура теплоприемника. Термический КПД всегда меньше 1, так как для получения КПД, равного единице, необходимо, чтобы Т1 = 0 и Т2 → ∞, а это невозможно. Термический КПД не зависит от природы рабочего тела и при Т1 = Т2 равен нулю, т. е. невозможно теплоту превратить в работу, если тела находятся в тепловом равновесии. Термический КПД цикла Карно всегда больше КПД любого цикла, осуществляемого в одном и том же интервале температур. Поэтому сравнение термических КПД любого цикла и КПД цикла Карно позволяет установить степень совершенства использования теплоты в машине, работающей по данному циклу.
Рис. 22. Прямой обратимый цикл Карно в Т, s-координатах |
В реальных двигателях цикл Карно не осуществляется. Однако на практике его значение велико, так как он служит эталоном для оценки степени совершенства любых циклов тепловых двигателей. Обратимый цикл Карно, осуществленный в интервале температур Т1 и Т2, изображается на Т, s-диаграмме в виде прямоугольника 1234 (рис. 22). С помощью Т, s-диаграммы можно рассчитать термический КПД другим способом: |
.