Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АЛГ-ГЕО_1КУРС_1СЕМЕ_5ГРУППА_ИНФОРМАТИКА.docx
Скачиваний:
0
Добавлен:
27.12.2019
Размер:
812.15 Кб
Скачать

82. Наибольший общий делитель многочленов. Взаимно простые многочлены. Алгоритм Евклида.

Опр. Пусть f(x),g(x)ϵF[x] при чем степень многочлена deg f(x)≥ deg(x), f(x) g(x), если сущ. ϕ (x), это f(x)=g(x).

Св-ва.

, если r(x)=0

Опр. Многочлен кот.явл.делителем 2 других многочленов наз. Их общих делителем.

Опр. Наибольшим общим делителем f(x) и g(x) наз. Их общий делитель кот. Делится на все остальные их общие делители. Нод определен с точностью до числового множества. Нод(f(x),g(x))=d(x)

Опр. Многочлены наз. Взаимно простыми., если НОД их явл. Многоченом нулевой степени .

Теорема. Если f(x)=g(x)*q(x)+r(x), то НОД многочлен f(x),g(x), такой же НОД(g(x),f(x)).

АЛГОРИТМ ЕВКЛИДА

Найти НОД (f(x),g(x)). Пусть Deg f(x) ≥ deg g(x), если f(x) g(x), тогда НОД (f(x),g(x)) = g(x), если не так, то f(x)=g(x)*q(x)+r(x): многочлен.

g(x)=r1(x)*q2(x)+r2(x), если r2!=0, то

r1(x)=r2(x)*q3(x)+r3(x)…

rn-1=rn(x)*qn+1(x)

теорема. Если d(x)=НОД(f(x),g(x))

Критерий взаимнопростые многочлены:f(x) и g(x)-взаимопростые

83. Разложение многочлена на неприводимые многочлены.

Пусть f(x) многочлен из F[x], F – поле, многочлен f(x) наз-ся неприводимым над полем F, если он не имеет делителей кроме делителей нулевой степени(α и αf(x)). В противоположном случае многочлен называется приводимым.

Св-ва неприводимого мн-чл.

1)Если f(x) – неприводим, а α – элемент поля, α!=0, то α(f(x)) - неприводим

2)Многочлен 1-ой степени над любым полем неприводим

3)Если f(x) – неприводим, g(x) – произвольный мн/чл., то либо g(x) f(x) или НОД (f(x),g(x))=1

ТЕОРЕМА

Всякий многочлен можно представить в виде произведения неприводимого многочлена, причем данное разложение единственно с точностью до числового множителя и порядка следования множителей.

84°. Корни многочлена от одной переменной. Схема Горнера.

Пусть F-поле, С-элемент поля, тогда F(C)= -значение многочлена при x=c.

ОПР.Элемент С взятый из поля F, называется корнем многочлена f(x) F[x], если f(C) = 0

Теорма Безу: Элемент С явл. Корнем f(x), тогда и тока тогда, когда

СХЕМА ГОРНЕРА пусть f(x)=a0xn + a1xn-1 +…+ an-1x + an; C F(элемент поля), f(x)=(x-c)*q(x)+r.

q(x)=b0xn-1 + b1xn-2 +…+ bn-2x + bn-1

a0

a1

a2

an-1

an

C

b0

b1=a1+C*b0

b2=a2+C*b1

Bn-1=an-1+C*bn-2

r=an+C*bn-1

Опр. Пусть с-корень f(x). C-наз.K- Кратным корнем f(x), если , но не делится на .

Теорема.Многочлен в степени n имеет n-корень, при этом если многочлен разложен на первую степень, то он имеет n-четное кол-во корней.

85. Интерполяционный многочлен Лагранжа.

ТЕОРЕМА Для любого натур числа n существует единственный многочлен степени ≤n, который принимает на перед заданные значения для n+первого значения переменной

Д-ВО:

Пусть многочлен f(x)

A0

An

F(x)

B0

Bn

f(a0)=b0 ,…, f(an)=bn

f(x) = j j(x)

. j(x) = ;

f(a0)= j j(a0) = b0 (an) + b1 1(a0)