
- •1°. Понятие матрицы. Элементарные преобразования матрицы.
- •2. Ступенчатая матрица. Теорема о приведении матрицы к ступенчатой матрице.
- •3°. Системы линейных уравнений (слу). Решение слу. Эквивалентные слу. Однородные слу.
- •4. Метод Гаусса решения систем линейных уравнений.
- •5°. Определители второго и третьего порядков.
- •7. Миноры и их алгебраические дополнения. Теорема Лапласа.
- •8°. Обратная матрица.
- •9. Правило Крамера решения систем линейных уравнений.
- •10°. Направленный отрезок. Эквивалентные направленные отрезки. Понятие вектора. Угол между векторами. Коллинеарные и компланарные векторы.
- •11°. Операции над векторами. Свойства операции над векторами.
- •12. Понятие линейной зависимости векторов. Линейно независимые векторы. Необходимое и достаточное условие коллинеарности двух векторов. Необходимое и достаточное условие компланарности трех векторов.
- •13°. Теорема о разложении вектора на плоскости по двум неколлинеарным векторам.
- •13. Теорема о разложении вектора на плоскости по двум неколлинеарным векторам.
- •14. Теорема о разложении вектора в пространстве по трем некомпланарным векторам.
- •15. Система координат на прямой. Координата вектора прямой. Координата точки прямой.
- •16°. Аффинная ск на плоскости. Координаты вектора на плоскости. Координаты точки на пл. Прямоугольная ск на пл.
- •17. Аффинная cк в пространстве. Координаты вектора в простр. Координаты точки в простр. Прямоугольная ск в простр.
- •18°. Свойства линейных операций над векторами в координатной форме.
- •20. Преобразование прямоугольных координат.
- •19. Полярная, цилиндрическая и сферическая системы координат.
- •21°. Скалярное произведение векторов. Свойства скалярного произведения векторов.
- •22. Выражение скалярного произведения векторов, заданных прямоугольными координатами.
- •23°. Векторное произведение векторов. Свойства векторного произведения векторов.
- •24. Выражение векторного произведения векторов, заданных прямоугольными координатами.
- •25°. Смешанное произведение векторов. Теорема о вычислении объема параллелепипеда, построенного на трех векторах.
- •26. Выражение смешанного произведения векторов, заданных прямоугольными координатами.
- •27°. Уравнение прямой на плоскости, проходящей через данную точку в данном направлении (каноническое уравнение прямой).
- •28. Общее уравнение прямой на плоскости.Параметрическое уравнение прямой на плоскости.
- •37°. Уравнение плоскости, проходящей через три точки, не принадлежащие одной прямой. Уравнение плоскости в отрезках.
- •38.Частные случаи расположения плоскости относительно ск.
- •39°. Уравнение прямой в пространстве, проходящей через данную точку в данном направлении (каноническое уравнение прямой).
- •40°. Параметрическое уравнение прямой в пространстве.
- •41°. Уравнение прямой в пространстве, проходящей через две точки.
- •52. Исследование формы эллипса
- •53. Гипербола и ее каноническое уравнение
- •54. Исследование формы гиперболы
- •55. Директрисы эллипса и гиперболы
- •56. Парабола и ее каноническое уравнение
- •57.Исследование формы параболы
- •58. Плоские фигуры n-порядка заданные общим уравнением.
- •59◦.Эллиспоид
- •60. Исследование формы эллипсоида методом сечений.
- •61°. Однополостный и двуполостный гиперболоиды.
- •62. Исследование формы гиперболоидов методом сечений.
- •63°. Конус второго порядка.
- •65°. Эллиптический и гиперболический параболоиды.
- •67. Цилиндры второго порядка. Эллиптический, гиперболический и параболический цилиндры.
- •68. Поверхности второго порядка, заданные общим уравнением.
- •69. Бинарные отношения.
- •70°. Отношение эквивалентности и порядка.
- •71°. Алгебраическая операция. Свойства алгебраических операций.
- •72°.Определение группы.Простейшие свойства групп.
- •73°. Определение кольца. Простейшие свойства колец.
- •74°.Определение поля.Простейшие свойства поля.
- •75.Изоморфизмы групп, колец.
- •76⁰.Построение поля комплексных чисел.Алгебраическая форма комплексного числа.
- •77°.Тригонометрическая и экспоненциальная форма записи комплексного числа.Действия над компл. Числами в триг.И экспон.Форме записи.
- •79.Корни n-ой степени из единицы
- •80. Кольцо многочлена от одной переменной
- •81°. Теорема о делении с остатком в кольце многочленов.
- •82. Наибольший общий делитель многочленов. Взаимно простые многочлены. Алгоритм Евклида.
- •83. Разложение многочлена на неприводимые многочлены.
- •84°. Корни многочлена от одной переменной. Схема Горнера.
- •85. Интерполяционный многочлен Лагранжа.
- •86. Рациональные дроби. Разложение правильной рациональной дроби в сумму простейших дробей.
- •87°. Многочлены с рациональными коэфициентами. Нахождение корней многочленов с рациональными коэфициентами.
- •88. Неприводимые многочлены над полем рациональных чисел. Критерий Эйзенштейна.
82. Наибольший общий делитель многочленов. Взаимно простые многочлены. Алгоритм Евклида.
Опр.
Пусть
f(x),g(x)ϵF[x]
при чем степень многочлена deg
f(x)≥
deg(x),
f(x)
g(x),
если сущ. ϕ
(x),
это f(x)=g(x).
Св-ва.
,
если r(x)=0
Опр. Многочлен кот.явл.делителем 2 других многочленов наз. Их общих делителем.
Опр. Наибольшим общим делителем f(x) и g(x) наз. Их общий делитель кот. Делится на все остальные их общие делители. Нод определен с точностью до числового множества. Нод(f(x),g(x))=d(x)
Опр.
Многочлены
наз. Взаимно простыми., если НОД их явл.
Многоченом нулевой степени
.
Теорема. Если f(x)=g(x)*q(x)+r(x), то НОД многочлен f(x),g(x), такой же НОД(g(x),f(x)).
АЛГОРИТМ ЕВКЛИДА
Найти НОД (f(x),g(x)). Пусть Deg f(x) ≥ deg g(x), если f(x) g(x), тогда НОД (f(x),g(x)) = g(x), если не так, то f(x)=g(x)*q(x)+r(x): многочлен.
g(x)=r1(x)*q2(x)+r2(x), если r2!=0, то
r1(x)=r2(x)*q3(x)+r3(x)…
rn-1=rn(x)*qn+1(x)
теорема.
Если
d(x)=НОД(f(x),g(x))
Критерий
взаимнопростые многочлены:f(x)
и g(x)-взаимопростые
83. Разложение многочлена на неприводимые многочлены.
Пусть f(x) многочлен из F[x], F – поле, многочлен f(x) наз-ся неприводимым над полем F, если он не имеет делителей кроме делителей нулевой степени(α и αf(x)). В противоположном случае многочлен называется приводимым.
Св-ва неприводимого мн-чл.
1)Если f(x) – неприводим, а α – элемент поля, α!=0, то α(f(x)) - неприводим
2)Многочлен 1-ой степени над любым полем неприводим
3)Если f(x) – неприводим, g(x) – произвольный мн/чл., то либо g(x) f(x) или НОД (f(x),g(x))=1
ТЕОРЕМА
Всякий
многочлен можно представить в виде
произведения неприводимого многочлена,
причем данное разложение единственно
с точностью до числового множителя и
порядка следования множителей.
84°. Корни многочлена от одной переменной. Схема Горнера.
Пусть
F-поле,
С-элемент поля, тогда F(C)=
-значение
многочлена при x=c.
ОПР.Элемент С взятый из поля F, называется корнем многочлена f(x) F[x], если f(C) = 0
Теорма
Безу: Элемент
С явл. Корнем f(x),
тогда и тока тогда, когда
СХЕМА ГОРНЕРА пусть f(x)=a0xn + a1xn-1 +…+ an-1x + an; C F(элемент поля), f(x)=(x-c)*q(x)+r.
q(x)=b0xn-1 + b1xn-2 +…+ bn-2x + bn-1
|
a0 |
a1 |
a2 |
… |
an-1 |
an |
C |
b0 |
b1=a1+C*b0 |
b2=a2+C*b1 |
… |
Bn-1=an-1+C*bn-2 |
r=an+C*bn-1 |
Опр.
Пусть с-корень f(x).
C-наз.K-
Кратным корнем f(x),
если
,
но не делится на
.
Теорема.Многочлен в степени n имеет n-корень, при этом если многочлен разложен на первую степень, то он имеет n-четное кол-во корней.
85. Интерполяционный многочлен Лагранжа.
ТЕОРЕМА Для любого натур числа n существует единственный многочлен степени ≤n, который принимает на перед заданные значения для n+первого значения переменной
Д-ВО:
Пусть многочлен f(x)
-
A0
…
An
F(x)
B0
…
Bn
f(a0)=b0 ,…, f(an)=bn
f(x)
=
j
j(x)
.
j(x)
=
;
f(a0)= j j(a0) = b0 (an) + b1 1(a0)