
- •1°. Понятие матрицы. Элементарные преобразования матрицы.
- •2. Ступенчатая матрица. Теорема о приведении матрицы к ступенчатой матрице.
- •3°. Системы линейных уравнений (слу). Решение слу. Эквивалентные слу. Однородные слу.
- •4. Метод Гаусса решения систем линейных уравнений.
- •5°. Определители второго и третьего порядков.
- •7. Миноры и их алгебраические дополнения. Теорема Лапласа.
- •8°. Обратная матрица.
- •9. Правило Крамера решения систем линейных уравнений.
- •10°. Направленный отрезок. Эквивалентные направленные отрезки. Понятие вектора. Угол между векторами. Коллинеарные и компланарные векторы.
- •11°. Операции над векторами. Свойства операции над векторами.
- •12. Понятие линейной зависимости векторов. Линейно независимые векторы. Необходимое и достаточное условие коллинеарности двух векторов. Необходимое и достаточное условие компланарности трех векторов.
- •13°. Теорема о разложении вектора на плоскости по двум неколлинеарным векторам.
- •13. Теорема о разложении вектора на плоскости по двум неколлинеарным векторам.
- •14. Теорема о разложении вектора в пространстве по трем некомпланарным векторам.
- •15. Система координат на прямой. Координата вектора прямой. Координата точки прямой.
- •16°. Аффинная ск на плоскости. Координаты вектора на плоскости. Координаты точки на пл. Прямоугольная ск на пл.
- •17. Аффинная cк в пространстве. Координаты вектора в простр. Координаты точки в простр. Прямоугольная ск в простр.
- •18°. Свойства линейных операций над векторами в координатной форме.
- •20. Преобразование прямоугольных координат.
- •19. Полярная, цилиндрическая и сферическая системы координат.
- •21°. Скалярное произведение векторов. Свойства скалярного произведения векторов.
- •22. Выражение скалярного произведения векторов, заданных прямоугольными координатами.
- •23°. Векторное произведение векторов. Свойства векторного произведения векторов.
- •24. Выражение векторного произведения векторов, заданных прямоугольными координатами.
- •25°. Смешанное произведение векторов. Теорема о вычислении объема параллелепипеда, построенного на трех векторах.
- •26. Выражение смешанного произведения векторов, заданных прямоугольными координатами.
- •27°. Уравнение прямой на плоскости, проходящей через данную точку в данном направлении (каноническое уравнение прямой).
- •28. Общее уравнение прямой на плоскости.Параметрическое уравнение прямой на плоскости.
- •37°. Уравнение плоскости, проходящей через три точки, не принадлежащие одной прямой. Уравнение плоскости в отрезках.
- •38.Частные случаи расположения плоскости относительно ск.
- •39°. Уравнение прямой в пространстве, проходящей через данную точку в данном направлении (каноническое уравнение прямой).
- •40°. Параметрическое уравнение прямой в пространстве.
- •41°. Уравнение прямой в пространстве, проходящей через две точки.
- •52. Исследование формы эллипса
- •53. Гипербола и ее каноническое уравнение
- •54. Исследование формы гиперболы
- •55. Директрисы эллипса и гиперболы
- •56. Парабола и ее каноническое уравнение
- •57.Исследование формы параболы
- •58. Плоские фигуры n-порядка заданные общим уравнением.
- •59◦.Эллиспоид
- •60. Исследование формы эллипсоида методом сечений.
- •61°. Однополостный и двуполостный гиперболоиды.
- •62. Исследование формы гиперболоидов методом сечений.
- •63°. Конус второго порядка.
- •65°. Эллиптический и гиперболический параболоиды.
- •67. Цилиндры второго порядка. Эллиптический, гиперболический и параболический цилиндры.
- •68. Поверхности второго порядка, заданные общим уравнением.
- •69. Бинарные отношения.
- •70°. Отношение эквивалентности и порядка.
- •71°. Алгебраическая операция. Свойства алгебраических операций.
- •72°.Определение группы.Простейшие свойства групп.
- •73°. Определение кольца. Простейшие свойства колец.
- •74°.Определение поля.Простейшие свойства поля.
- •75.Изоморфизмы групп, колец.
- •76⁰.Построение поля комплексных чисел.Алгебраическая форма комплексного числа.
- •77°.Тригонометрическая и экспоненциальная форма записи комплексного числа.Действия над компл. Числами в триг.И экспон.Форме записи.
- •79.Корни n-ой степени из единицы
- •80. Кольцо многочлена от одной переменной
- •81°. Теорема о делении с остатком в кольце многочленов.
- •82. Наибольший общий делитель многочленов. Взаимно простые многочлены. Алгоритм Евклида.
- •83. Разложение многочлена на неприводимые многочлены.
- •84°. Корни многочлена от одной переменной. Схема Горнера.
- •85. Интерполяционный многочлен Лагранжа.
- •86. Рациональные дроби. Разложение правильной рациональной дроби в сумму простейших дробей.
- •87°. Многочлены с рациональными коэфициентами. Нахождение корней многочленов с рациональными коэфициентами.
- •88. Неприводимые многочлены над полем рациональных чисел. Критерий Эйзенштейна.
67. Цилиндры второго порядка. Эллиптический, гиперболический и параболический цилиндры.
Опр. Пусть π-некоторая плоскость, ϒ-некоторая линия этой плоскости через каждую точку линии ϒ проведем прямые перпендикулярно плоскости π. Образовавшейся поверхность наз. Цилиндрической.
Опр. Линия ϒ-явл. Фигурой 2 порядка, то цилиндрическая поверхность наз.цилиндром второго порядка.
68. Поверхности второго порядка, заданные общим уравнением.
Опр. Уравнение вида
,
(2.1)
где
,
,
,
,
(т.е.
хотя бы один коэффициент
)
называется уравнением второго порядка
от трех переменных.
Опр. Фигура, которая в некоторой специально выбранной прямоугольной системе координат может быть задана уравнением (2.1) называется поверхностью второго порядка.
Пример.
Пусть
фигура задана уравнением
.
Здесь
,
,
,
,
а все остальные коэффициенты равны
нулю. Перейдем к новой системе координат
по формулам:
(2.2)
Если
(2.2) подставить в уравнение (2.1), и наложить
условие, что коэффициенты при слагаемых
,
,
будут равны нулю, то получим уравнение
вида
(2.3)
где
,
,
находятся из уравнения:
,
а углы в системе (2.2) находятся из решения системы:
Рассмотрим случаи.
I)
Пусть
,
,
.
Тогда
,
где
.
Обозначая
новую систему координат
будем иметь
,
,
.
Теперь имеем
Возможны следующие случаи:
I1.
Если
,
,
,
D
одного знака, то фигура, заданная
уравнением (2.1) – эллипсоид.
I2. Если , , одного знака, а D противоположного знака, то фигура, заданная уравнением (2.1) – пустое множество (мнимый эллипсоид).
I3.
Если
,
,
одного знака, а
противоположного знака, то фигура,
заданная уравнением (2.1) – однополостный
гиперболоид.
I4. Если , одного знака, а , противоположного знака, то фигура, заданная уравнением (2.1) – двуполостный гиперболоид.
I5.
Если
,
,
одного знака, а
,
то фигура, заданная уравнением (2.1) –
точка (начало координат, точка
).
I6. Если , одного знака, противоположного, , то фигура, заданная уравнением (2.1) – конус.
69. Бинарные отношения.
Бинарным отношением, заданным на множестве А, называется подмножество R≤А²(А×А). Если a и b є А, то aRb(элемент а находится в бинарном отношении R с элем.b). Пусть на множ. А задано бин.отнош.R, тогда,если R=A²,то назыв. универ сальное бинарное отношение,если R=0,то R-пустое бин.отнош.Опр.Б.о.R назыв.
1) рефлексивным,если aRa;
2) симметричным,если aRb→bRa;
3) транзитивным,если aRb, bRc→aRc;
4) антисимметричным, если aRb, bRa→a=b.
70°. Отношение эквивалентности и порядка.
Отношение эквивалентности и порядка.Б.о.R наз.отношением эквивалентности,если R-рефлексивно,симметрично и транзитивно.
Опр.Пусть R-отнош.экв. аєА.Множество ā={xєA|aRx}назыв. классом эквивалентности элем. а. Теорема:любых два класса эквивалентности либо не пересекаются, либо совпадают.
Опред:если на множ.А задано отнош.эквив. ̴,то совокупность всевожможных непересекающихся классов эквив. наз. фактор-множеством(А ̰).Б.о. наз. отнош.частичного порядка,если рефл., антисимм., транзитивно.Элем. a и b-сравнимые,если aRb или bRa, в противном случае они несравнимы.