Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_2.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
705.02 Кб
Скачать

45. Изучение зависимости между количественными признаками. Ранговые показатели связи.

Для исследования взаимосвязи качественных альтернативных признаков, принимающих только 2 взаимоисключающих значения, используется коэффициент ассоциации и контингенции. При расчете этих коэффициентов составляется т.н. таблица 4-х камней, а сами коэффициенты рассчитываются по формуле:

 

 

Если коэффициент ассоциации ³ 0,5, а коэффициент контингенции ³ 0,3, то можно сделать вывод о наличии существенной зависимости между изучаемыми признаками.

Если признаки имеют 3 или более градаций, то для изучения взаимосвязей используются коэффициенты Пирсена и Чупрова. Они рассчитываются по формулам:

С - коэффициент Пирсена

К - коэффициент Чупрова

 

 

j - показатель взаимной сопряженности

K - число значений (групп) первого признака

K1 - число значений (групп) второго признака

 

fij - частоты соответствующих клеток таблицы

mi - столбцы таблицы

- j - строки

Для расчета коэффициентов Пирсена и Чупрова составляется вспомогательная таблица:

При ранжировании качественных признаков с целью изучения их взаимосвязи используется коэффициент корреляции Кэндалла.

 

- - число наблюдений

S - сумма разностей между числом последовательностей и числом инвервий по второму признаку.

S=P+Q

P - сумма значений рангов, следующих за данными и превышающих его величину

Q - сумма значений рангов, следующих за данными и меньших его величины (учитывается со знаком «-»).

При наличии связанных рангов формула коэффициента Кендалла будет следующей:

 

Vxи Vyопределяются отдельно для рангов Xи Yпо формуле:

 

46. Понятие и классификация рядов динамики

Рядами динамики называются последовательно расположенные в хронологическом порядке статистические  данные,  отображающие развитие изучаемого явления во времени.

В каждом ряду динамики имеются два основных элемента:

  1. показатель времени t, который может быть представлен в виде определенных дат (моментов) времени, либо отдельных периодов (год, квартал, месяц, сутки);

  2. уровни развития изучаемого явления у – отображают количественную  оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.

В зависимости от характера изучаемого явления уровни рядов динамики могут относиться или к определенным датам (моментам) времени, или к отдельным периодам. В соответствии с этим, ряды динамики подразделяются на:

  1. моментные ряды динамики отображают состояние изучаемых явлений на определенные даты (моменты) времени, например, остатки товаров на складе готовой продукции на определенный момент времени (дату);

  2. интервальные ряды динамики отображают итоги развития (функционирования) изучаемых явлений за отдельные периоды (интервалы) времени, например товарооборот предприятия за определенный период. Чем больше изменчивость явления во времени, тем меньше должны быть промежутки во времени между данными.

Отличительной особенностью моментного и интервального рядов динамики является понятие интервала. Для моментного ряда динамики интервал – промежуток времени между датами. Кроме того, ряды динамики могут быть:

  • полный ряд - ряд динамики,  в котором одноименные моменты времени или периоды времени строго следуют один за другим в календарном порядке или равноотстоят друг от друга.

  • неполный ряд динамики - ряд, в котором уровни зафиксированы в неравноотстоящие моменты или периоды времени.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]