
- •26. Термоэлектрические явления. Контактная разность потенциалов.
- •28.Магнитное поле. Основные характеристики поля: магнитная индукция, напряженность. Энергия магнитного поля, объемная плотность энергии магнитного поля.
- •29. Магнитный поток. Явление электромагнитной индукции. Закон Фарадея. Самоиндукция
- •30.Сила Лоренца. Движение заряженных частиц в электрических и магнитных полях.
- •31. Магнитное поле в веществе. Магнитные моменты электрона, атома и молекулы.
- •Ферромагнетики
- •33. Переменный ток. Омическое и емкостное сопротивление в цепи переменного тока. Волновая и векторная диаграммы.
- •34.Переменный ток. Омическое и индуктивное сопротивление в цепи переменного тока. Волновая и векторная диаграммы.
- •35. Полное сопротивление (импеданс) участка цепи переменного тока с последовательным соединением резистора, катушки индуктивности и конденсатора. Векторная диаграмма.
- •36. Закон Ома для полной цепи переменного тока. Резонанс напряжений.
- •37.Электромагнитные волны и их основные характеристики. Уравнение электромагнитной волны. Энергия волны. Вектор Умова–Пойнтинга. Шкала электромагнитных волн.
- •Интенсивность (плотность потока энергии) волны: . Учитывая, что скорость величина векторная, можно записать: .
- •Шкала электромагнитных волн
- •38.Геометрическая оптика. Законы отражения и преломления света. Явление полного внутреннего отражения. Рефрактометрия.
- •39. Микроскоп. Ход лучей в микроскопе с фотонасадкой. Ход лучей в микроскопе при визуальном наблюдении. Увеличение микроскопа.
- •40.Явление фотоэффекта. Внешний и внутренний фотоэффект. Законы Столетова. Уравнение Эйнштейна. Применение явления фотоэффекта в медицине.
- •41.Волновая оптика. Интерференция света. Интерференция в тонких пленках. Интерферометры.
- •42.Дифракция света. Принцип Гюйгенса–Френеля. Дифракционная решетка. Дифракционный спектр.
- •43.Дисперсия и разрешающая способность оптических приборов (дифракционная решётка, микроскоп).
- •44.Поляризация света. Поляризация при отражении и преломлении света на диэлектрике. Закон Брюстера.
- •45.Поляроиды. Двойное лучепреломление. Призма Николя. Закон Малюса.
- •46.Оптическая активность вещества. Удельное вращение. Дисперсия оптической
- •47.Дисперсия света. Понятие о классической теории дисперсии света. Нормальная и аномальная дисперсия света. Спектральные приборы (спектроскоп, спектрометр, спектрофотометр).
- •48.Поглощение света. Закон Бугера–Ламберта. Закон Бера. Молярный коэффициент поглощения. Оптическая плотность. Колориметрия.
- •49.Рассеяние света. Закон Релея. Эффект Тиндаля. Молекулярное рассеяние. Нефелометрия.
- •50.Тепловое излучение тел. Законы излучения абсолютно чёрного тела (Стефана–Больцмана, Вина).
48.Поглощение света. Закон Бугера–Ламберта. Закон Бера. Молярный коэффициент поглощения. Оптическая плотность. Колориметрия.
ПОГЛОЩЕНИЕ СВЕТА
При прохождении электромагнитной волны через вещество ее интенсивность уменьшается. Это явление связано с поглощением (абсорбцией) света.
Зако́н Бугера — Ламберта — Бера — физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.
Закон выражается следующей формулой:
,
где
— интенсивность входящего пучка,
—
толщина слоя вещества, через которое
проходит свет,
— показатель поглощения (не путать с
безразмерным показателем поглощения
, который связан с
формулой
, где —
длина
волны).
Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.
Молярный коэффициент поглощения является основной характеристикой поглощения данной системы при данной длине волны. Поскольку поглощение при различных длинах волн различно, то и е изменяется с изменением длины волны.
Молярный коэффициент поглощения не зависит от концентрации вещества при прохождении света данной длины волны
D - плотность, C - концентрация , l - толщина слоя .
Если концентрация С выражена в молях на литр, a l — в сантиметрах, то K представляет собой молярный коэффициент светопоглощения и обозначается Ел.
Опти́ческая
пло́тность — мера ослабления света
прозрачными объектами (такими, как
кристаллы, стекла, фотоплёнка) или
отражения света непрозрачными объектами
(такими, как фотография, металлы и т.д.).
Вычисляется как десятичный логарифм
отношения потока излучения падающего
на объект, к потоку излучения прошедшего
через него (отразившегося от него), т.
е. это есть логарифм от величины, обратной
к коэффициенту пропускания (отражения).
Колориметрия (от лат. color — цвет и греч. μετρώ — измеряю) — физический метод химического анализа, основанный на определении концентрации вещества по интенсивности окраски растворов (более точно — по поглощению света растворами).
49.Рассеяние света. Закон Релея. Эффект Тиндаля. Молекулярное рассеяние. Нефелометрия.
Рассеяние света. С классической точки зрения рассеяние света состоит в том, что
электромагнитные волны, проходя через вещество, вызывают колебания электронов в атомах. Объяснение: если размеры частицы малы, то электроны, совершающие
вынужденные колебания в атомах, эквивалентны колеблющемуся диполю. Этот диполь колеблется с частотой падающей на него световой волны. Отсюда, коротковолновая часть спектра рассеивается значительно более интенсивно, чем длинноволновая. Голубой свет рассеивается почти в 5 раз интенсивнее, чем красный. Поэтому рассеянный свет – голубой, а прошедший – красноватый. На очень больших высотах (сотни километров) концентрация молекул атмосферы очень мала, рассеяние практически исчезает, небо должно казаться черным, а звезды видны в присутствии Солнца. При космических полетах все эти предсказания подтвердились полностью.
Закон
Рэлея-Джинса — закон излучения для
равновесной плотности излучения
абсолютно чёрного тела
и для испускательной способности
абсолютно чёрного тела
.
Эффект Тиндаля, рассеяние Тиндаля (англ. Tyndall effect) — оптический эффект, рассеяние света при прохождении светового пучка через оптически неоднородную среду. Обычно наблюдается в виде светящегося конуса (конус Тиндаля), видимого на тёмном фоне.
Характерен для растворов коллоидных систем (например, золей, металлов, разбавленных латексов, табачного дыма), в которых частицы и окружающая их среда различаются по показателю преломления.
Нефелометрия - метод исследования и анализа вещества по интенсивности светового потока, рассеиваемого взвешенными частицами данного вещества.
Суть метода
Интенсивность рассеянного светового потока зависит от множества факторов, в частности от концентрации частиц в анализируемой пробе. Большое значение при нефелометрии имеет объём частиц, рассеивающих свет. Важное требование к реакциям, применяемым при нефелометрии, заключается в том, что продукт реакции должен быть практически нерастворим и представлять собой суспензию (взвесь). Для удержания твёрдых частиц во взвешенном состоянии применяются различные стабилизаторы (например, желатин), предотвращающие коагуляцию частиц.