
- •2. Контактные напряжения и прочность дм.
- •1. Прочность, жёсткость и износостойкость дм.
- •3. Металлические машиностроительные материалы.
- •5. Классификация соединений.
- •7. Расчёт заклёпочных соединений.
- •6. Конструкция заклёпочных соединений.
- •4. Неметаллические машиностроительные материалы.
- •8. Узел фермы. Условия проектирования.
- •9. Конструкция сварных соединений.
- •10. Расчет стыковых сварных соединений, полученных электродуговой сваркой.
- •11. Расчет нахлесточныхсварных соединений.
- •12. Расчёт тавровых сварных соединений.
- •13. Конструкция клеевых и паяных соединений.
- •15. Соединения прессовые (с натягом).
- •14. Расчёт клеевых и паяных соединений.
- •16. Расчёт зазоров и натягов в прессовом соединении.
- •17. Расчёт прессовых соединений, нагруженных осевой силой.
- •18. Расчёт прессовых соединений, нагруженных крутящим моментом.
- •19. Расчёт прессовых соединений, нагруженных изгибающим моментом.
- •20. Дополнительные указания к расчёту прессового соединения.
- •21. Конструкции резьбовых соединений. Резьба, геометрические параметры, типы резьб.
- •22. Выбор профиля резьбы.
- •23. Основные типы крепёжных деталей.
- •24.Теория винтовой пары. Условие самоторможения.
- •25. Распределение осевой нагрузки винта по виткам резьбы и способы её выравнивания.
- •29. Расчёт болтов, поставленных без зазора.
- •30. Расчёт болтов, поставленных с зазором.
- •31. Расчёт болтов с эксцентрично приложенной нагрузкой.
- •32. Условие герметичности стыков в резьбовых соединениях.
- •33. Конструкции шпоночных соединений.
- •34. Расчёт призматических шпонок.
- •35. Расчёт сегментных шпонок.
- •36.Соединения клиновыми шпонками.
- •37. Соединения тангенциальными шпонками.
- •38. Материал шпонок. Допускаемые напряжения.
- •39. Конструкции зубчатых (шлицевых) соединений.
- •40. Критерии работоспособности и расчёт зубчатых (шлицевых) соединений.
- •44. Силы и силовые зависимости в ременных передачах.
- •43. Основы расчета ременных передач.
- •45. Конструкции клиноременных передач.
- •46. Расчёт ременных передач по допускаемым напряжениям.
- •47. Потери в ременной передаче и кпд.
- •48. Поликлиновые и зубчатоременные передачи.
- •51. Конструкции основных элементов цепной передачи.
- •49. Способы натяжения ремней.
- •52. Звёздочки приводных цепей, материалы звёздочек и цепей.
- •50. Цепные передачи, общие сведения, основные характеристики.
- •54. Критерии работоспособности и расчёта цепных передач.
- •53. Силы в цепной передаче.
- •55. Фрикционные передачи. Общие сведенья, принцип действия, классификация.
- •58. Планетарные передачи, устройство, принцип действия.
- •59. Волновые передачи. Устройство, принцип действия.
- •57. Зубчатые передачи, классификация, материалы.
- •60. Передачи с зацеплением Новикова.
- •56. Основные типы фрикционных передач и вариаторов. Лобовой и торовый вариаторы.
- •1. Прочность, жёсткость и износостойкость дм.
- •2. Контактные напряжения и прочность дм.
22. Выбор профиля резьбы.
Определяется многими факторами, важнейшие из которых прочность, технологичность и силы трения в резьбе. Так, например, крепежная резьба должна обладать высокой прочностью и относительно большими силами трения, предохраняющими крепежные детали от самоотвинчивания.
Резьбы винтовых механизмов должны быть с малыми силами трения, чтобы повысить КПД и уменьшить износ. Прочность во многих случаях не является для них основным критерием, определяющим размеры винтовой пары.
Выбор профиля резьбы определяется её назначением. Для грузовых и ходовых винтов применяют резьбы прямоугольные, трапецеидальные и упорные. Такие резьбы обеспечивают больший выигрыш в силе и более высокий КПД, чем резьба треугольного профиля. С указанных позиций более выгодна прямоугольная резьба, но она менее прочная, чем другие резьбы. Для крепёжных резьбовых изделий основное применение имеет резьба треугольного профиля, обладающая наибольшей прочностью и надёжностью против самоотвинчивания.
23. Основные типы крепёжных деталей.
Для соединения деталей применяют болты (винты с гайками), винты, шпильки с гайками.
Болт – цилиндрический стержень с резьбой, имеющий головку. За головку болт вращают или, наоборот, удерживают от вращения при соединении деталей. Нарезной частью стержня болт ввинчивается в гайку.
Винт — отличается от болта только тем, что ввинчивается не в гайку, а в резьбовое отверстие одной из соединяемых деталей.
Головка болта имеет форму шестигранной призмы. Стержень болта входит в отверстие соединяемых деталей с зазором. На стержень болта навинчивается гайка. Между гайкой и соединяемыми деталями во избежание повреждения вращающейся детали, гайкой ставят кольцевую пластинку — шайбу.
Шпилька – цилиндрический стержень, имеющий винтовую нарезку с обоих концов. При соединении шпилькой ее ввертывают в одну из скрепляемых деталей, а на другой конец шпильки навинчивают гайку.
Гайка — деталь резьбового соединения или винтовой передачи, имеющая отверстие с резьбой.
24.Теория винтовой пары. Условие самоторможения.
Зависимость между моментом, приложенным к гайке, и осевой силой винта. Если винт нагружен осевой силой F (рис. 1.13), то для завинчивания гайки к ключу необходимо приложить момент Тзав, а к стержню винта — реактивный момент Тр, который удерживает стержень от вращения. При этом можно записать: Тзав = Тτ +Тр
где Тτ — момент сил трения на опорном торце гайки; Тр — момент сил трения в резьбе. Равенство (1.3), так же как и последующие зависимости, справедливо для любых винтовых пар болтов, винтов, шпилек и винтовых механизмов.
Не допуская существенной погрешности, принимают приведенный радиус сил трения на опорном торце гайки равным среднему радиусу этого торца или Dcp/2. При этомTτ = Ff(Dcp/2)
где Dcp = (D1+doтв)/2; D1—наружный диаметр опорного торца гайки; dотв— диаметр отверстия под винт; f—коэффициент трения на торце гайки.
Момент сил трения в резьбе определим, рассматривая гайку как ползун, поднимающийся по виткам резьбы, как по наклонной плоскости (рис. 1.14, а). По известной теореме механики, учитывающей силы трения, ползун находится в равновесии, если равнодействующая Fn системы внешних сил отклонена от нормали n—n на угол трения ϕ. В нашем случае внешними являются осевая сила F и окружная сила Ft = 2Tp/d2. Здесь Tр—не реактивный, а активный момент со стороны ключа, равный (Тзав- Ττ).
Далее (рис. 1.14) Ft = Ftg(ψ+ϕ) или Tр = 0,5Fd2tg (ψ + φ),где ψ—угол подъема резьбы; ϕ = arctg(fnp) — угол трения в резьбе;fпр — приведенный коэффициент трения в резьбе, учитывающий влияние угла профиля.
Искомая зависимость:
Tзав= 0,5Fd2 [(Dcp/d2)f + tg(ψ + φ)]
При отвинчивании гайки окружная сила Ft и силы трения меняют направление (рис. 1.14,6).