- •4. Асбестовые материалы
- •5. Атомно-кристаллическое строение металлов
- •Прочность на сжатие
- •Бумажные материалы
- •ВоПрОс 16:
- •ВоПрОс 17:
- •ВоПрОс 18:
- •ВоПрОс 19:
- •ВоПрОс 20:
- •20. Дефекты кристаллического строения металлов: точечные, линейные, поверхностные. Их влияние на свойства. (влияние на св-ва не нашел) Дефекты строения кристаллических тел
- •Точечные дефекты
- •Линейные дефекты
- •Поверхностные дефекты
- •21.Диаграмма состояния железо—цементит Фазы диаграммы железо — цементит
- •24.Жаропрочность. Ползучесть. Характеристики жаропрочности. Методы повышения жаропрочности.
- •История
- •[Править]Причины и свойства
- •[Править]Кривая ползучести
- •[Править]Стадии ползучести
- •[Править]Ползучесть и пластичность
- •[Править]Жаропрочность
- •Пути повышения жаропрочности и ресурса.
- •25.Жаростойкость металлов и сплавов и методы ее повышения.
- •Влияние хрома на жаростойкость хромистой стали
- •26.Железо и его свойства
- •Физические свойства
- •[Править]Химические свойства [править]Характерные степени окисления
- •[Править]Свойства простого вещества
- •27.Железо и сплавы на его основе
- •28.Закалка и отпуск сталей. Виды закалок.
- •Виды закалки металла
- •Закалка в одной среде
- •Закалка в двух средах
- •Ступенчатая закалка
- •Недостатки ступенчатой закалки
- •Закалка с подстуживанием
- •Поверхностная закалка стали
- •Поверхностная закалка при нагреве ацетилено-кислородным пламенем
- •Поверхностная закалка токами высокой частоты
- •29.Защита металлов от коррозии
- •30 Инструментальные стали и сплавы
- •Инструментальные стали
- •Твердые металлокерамические сплавы
- •40 Композиционные материалы с металлической матрицей
- •61. Основные механические свойства, характеризующие прочность и пластичность
- •62. Основные понятия о строении, структуре и свойствах материалов
- •63. Основы теории сплавов. Понятие о компоненте, фазе, микро- и макроструктуре. Типы фаз
- •64. Отжиг и нормализация, закалка
- •65. Отпуск и искусственное старение
- •66. Пленкообразующие материалы
- •67. Поверхностная закалка
- •68. Полимерные вещества
- •69. Полимерные пластические материалы
- •70. Порошковые металлические материалы
- •2. Структура и свойства чугуна
2. Структура и свойства чугуна
Микроструктура чугуна состоит из металлической основы (матрицы) и графитных включений. Свойства чугуна определяются свойствами металлической основы и характера включений графита.
Чугуны содержат следующие структурные составляющие (рис. 31):
графит (Г);
перлит (П);
феррит (Ф);
ледебурит (Л);
- фосфидную эвтектику
По микроструктуре различают:
белый чугун I (Ц+Г);
серый перлитный чугун II (П+Г);
серый ферритный чугун III (Ф+Г);
половинчатый чугун II а (П+Ц+Г);
высокопрочный чугун IV (П+шаровидный графит) (см. рис. 31).
Формирование микроструктуры чугуна зависит от его химического состава и скорости охлаждения (толщины) отливки. Структура металлической основы определяет твердость чугуна.
Углерод в составе чугуна может присутствовать в виде химического соединения — цементит Fe3C, графита или их смеси. По сравнению с металлической основой графит имеет низкую прочность. Места его залегания можно считать нарушениями сплошности металла. Чугун как бы пронизан включениями графита, ослабляющими его металлическую основу. По мере округления графитных включений (за счет модифицирования чугуна присадками SiCa, FeSi, Al, Mg) их отрицательная роль как надрезов металлической основы снижается и механические свойства чугуна растут.
Например, серый чугун (пластинчатая форма графита) имеет низкие характеристики механических свойств, так как пластинки включений графита играют роль концентратов напряжений в отливке. Однако серый чугун имеет ряд преимуществ: обладает высокой жидкотекучестью и малой литейной усадкой; включения графита делают стружку ломкой, позволяя легко обрабатывать чугун резанием; благодаря смазывающему действию графита чугун обладает хорошими антифрикционными свойствами; хорошо гасит вибрации и резонансные колебания. Из высокопрочных чугунов (шаровидная форма графита) изготавливают ответственные детали: зубчатые колеса, коленчатые валы.
Кремний способствует графитизации чугуна. Изменяя его содержание и скорость охлаждения отливки, можно получить чугун различной структуры.
Марганец препятствует графитизации и нейтрализует вредное влияние серы, образуя с ней тугоплавкие соединения MnS.
Фосфор не оказывает существенного влияния на процесс графитизации. При повышенном содержании фосфора в структуре чугуна образуются твердые включения фосфидной эвтектики, которая повышает его литейные свойства.
Сера является вредной примесью. Она обусловливает ухудшение литейных свойств чугуна, увеличение усадки, повышение склонности к трещинообразованию, снижение температуры красноломкости чугуна.
85) Структурные составляющие железоуглеродистых сплавов
В зависимости от температуры и содержания углерода железоуглеродистые сплавы могут содержать следующие фазы: аустенит, феррит, цементит и графит. Структурные составляющие них сплавах могут состоять из одних этих фаз, а также из их смесей (ледебурита — эвтектическая смесь аустенита и цементита; перлита — эвтектоидная смесь феррита и цементита).
Аустенит является твердым раствором углерода в γ-железе. Предельная концентрация углерода в аустените составляет 0% при 1145°. С понижением температуры растворимость углерода в аустените уменьшается до 0,08%. Такую предельную концентрацию аустенит имеет при 723°. Эта температура является одновременно нижней границей существования устойчивого аустенита в углеродистых сталях. Сталь, имеющая структуру аустенита, немагнитна и обладает большой пластичностью.
Феррит представляет собой твердый раствор углерода в α-железе. В α-железе при 700° растворяется до 0,02% углерода, феррит характеризуется незначительными величинами твердости и прочности и высокой пластичностью.Механические свойства феррита сильно зависят от величины зерна.
Цементит — это химическое соединение железа с углеродом (карбид железа) Fе3С. Цементит содержит около 6,67% Ии рода, весьма тверд и хрупок. Твердость его приближается его к НВ — 800. Цементит — нестабильное (эндотермическое) соединение и может в определенных условиях разлагаться.
Перлитом называют механическую смесь феррита и цементита, образующуюся при эвтектоидном распаде медленно охлаждаемого аустенита. Концентрация углерода в перлите составляет 0,80%. Твердость перлита НВ 180 ÷ 220. Сталь, содержащая 0,80%С, имеет чисто перлитную структуру.
Ледебурит — это механическая смесь аустенита и цементита, образующаяся при кристаллизации жидкого сплава, содержащего 4,3%С. Так как при температуре 723° аустенит превращается в перлит, то это превращение охватывает и аустенит, входящий в состав ледебурита. Таким образом, ниже 723° ледебурит представляет собой уже не смесь аустенита с цементитом, смесь перлита с цементитом.
Графит представляет собой свободный углерод, расположенный в основной массе металла в виде пластинок или зерен. Он образуется либо за счет распада цементита, либо выделяется н I пересыщенных жидких или твердых растворов.
Кроме указанных структурных составляющих, в технических железоуглеродистых сплавах наблюдаются в небольшом количестве и другиефазы — сульфиды, фосфиды, окислы, нитриды и структурные составляющие на их основе (например, фосфиднаяввтектика в чугуне).
86)Термическая обработка металлов и сплавов. Классификация видов термической обработки.
Отжиг – термическая обработка заключающаяся в нагреве металла до определенных температур, выдержка и последующего очень медленного охлаждения вместе с печью. Применяют для улучшения обработки металлов резанием, снижения твердости, получения зернистой структуры, а также для снятия напряжений, устраняет частично (или полностью) всякого рода неоднородности, которые были внесены в металл при предшествующих операциях (механическая обработка, обработка давлением, литье, сварка), улучшает структуру стали.
Отжиг первого рода. Это отжиг при котором не происходит фазовых превращений, а если они имеют место, то не оказывают влияния на конечные результаты, предусмотренные его целевым назначением. Различают следующие разновидности отжига первого рода: гомогенизационный и рекристаллизационный.
Отжиг второго рода. Это отжиг, при котором фазовые превращения определяют его целевое назначение. Различают следующие виды: полный, неполный, диффузионный, изотермический, светлый, нормализованный (нормализация), сфероидизирующий (на зернистый перлит).
Закалка
Закалка – это нагрев до оптимальной температуры, выдержка и последующее быстрое охлаждение с целью получения неравновесной структуры.
В результате закалки повышается прочность и твердость и понжается пластичность стали. Основные параметры при закалке – температура нагрева и скорость охлаждения. Критической скоростью закалки называется скорость охлаждения, обеспечивающая получение структуры – мартенсит или мартенсит и остаточный аустенит.
Отпуск
Отпускстали является завершающей операцией термической обработки, формирующей структуру, а следовательно, и свойства стали. Отпуск заключается в нагреве стали до различных температур (в зависимости от вида отпуска, но всегда ниже критической точки), выдержке при этой температуре и охлаждении с разными скоростями. Назначение отпуска – снять внутренние напряжения, возникающие в процессе закалки, и получить необходимую структуру.
В зависимости от температуры нагрева закаленной детали различают три вида отпуска: высокий, средний и низкий.
Высокий отпуск производится при температурах нагрева выше 350–600 °С, но ниже критической точки; такой отпуск применяется для конструкционных сталей.
Средний отпуск производится при температурах нагрева 350 – 500 °С; такой отпуск широко применяется для пружинной и рессорной сталей.
Низкий отпускпроизводится при температурах 150–250 °С. Твердость детали после закалки почти не изменяется; низкий отпуск применяется для углеродистых и легированных инструментальных сталей, для которых необходимы высокая твердость и износостойкость.
Старение
Старение – это процесс изменения свойств сплавов без заметного изменения микроструктуры. Известны два вида старения: термическое и деформационное.
Термическое старение протекает в результате изменения растворимости углерода в железе в зависимости от температуры.
Если изменение твердости, пластичности и прочности протекает при комнатной температуре, то такое старение называется естественным.
Если же процесс протекает при повышенной температуре, то старение называется искусственным.
Деформационное (механическое) старение протекает после холодной пластической деформации.
Алюминиевые сплавы
Алюминиевые сплавы подвергаются трем видам термической обработки: отжигу, закалке и старению. Основными видами отжига являются: диффузионный, рекристаллизационный и термически упрочненных сплавов.
Медь и медные сплавы
Термическая обработка меди. Деформирование меди сопровождается повышением ее прочности и понижением пластичности. Для повышения пластичности медь подвергают рекристаллизационному отжигу при 500 – 600ºС, в результате которого пластичность резко повышается, а прочность снижается.
Термическая обработка латуней. Они подвергаются только рекристаллизационному отжигу при 600 – 700ºС (для снятия наклепа). Охлаждают латуни при отжигена воздухе или для ускорения охлаждения и лучшего отделения окалины в воде.
Титановые сплавы
Титановые сплавы подвергают рекристаллизационному отжигу и отжигу с фазовой перекристаллизацией, атак жеупрочнению термической обработкой – закалкой и старением. Для повышения износостойкости и задиростойкости титановые сплавы подвергают азотированию, цементации или окислению.
Схема классификации основных видов термической обработки металлов и сплавов
Термическая обработка подразделяется на собственно термическую, химико-термическую и термомеханическую (или деформационно-термическую). Собственно термическая обработка заключается только в термическом воздействии на металл или сплав, химико-термическая — в сочетании термического и химического воздействия, термомеханическая — в сочетании термического воздействия и пластической деформации. Собственно термическая обработка включает следующие основные виды: отжиг 1-го рода, отжиг 2-го рода, закалку с полиморфным превращением, закалку без полиморфного превращений, отпуск и старение. Эти виды термической обработки относятся и к сталям, и к цветным металлам и сплавам. Каждый из видов собственно термообработки подразделяется на разновидности, специфические для сплавов на разных основах. Химико-термическая и термомеханическая обработки имеют разновидности, рассматриваемые в соответствующих главах.
87) Термическая обработка углеродистых сталей.
Термической обработкой называется совокупность операций нагрева, выдержки и охлаждения с целью получения заданных свойств за счет изменения внутреннего строения и структуры. Углеродистые стали широко используются для изготовления деталей машин и инструментов. Конструкционные стали поставляют в отожженном или нормализованном состоянии с феррито-перлитной структурой, инструментальные - после сфероидизирующего отжига, обеспечивающего получение структуры зернистого перлита или зернистого псевдоперлита. После изготовления изделия проводят вторичную термическую обработку. В качестве вторичной термической обработки применяют закалку и последующий отпуск : низкий, средний, высокий. Закалка обеспечивает получение структуры мартенсита в конструкционных сталях, а в инструментальных – либо мартенсита (для сталей с содержанием углерода не более 0.8% ) либо мартенсита и зернистого цементита. Для ответственных деталей машин чаще всего применяют закалку и высокий отпуск – называется улучшением.
88) Закалка состоит в нагреве углеродистых сталей, содержащих углерода до 0,8%, до температуры выше линии SG на 20...40 °С (см. рисунок), т. е. Ас3 + (20...40 °С), а сталей с содержанием углерода более 0,8% до температуры выше линии SK на 20...40°С, т.е. Лс, + (20...40 °С), выдержке при этих температурах и охлаждении в охлаждающей среде о соответствующей скоростью охлаждения. Стали с содержанием углерода меньше 0,25% в результате закалки свои свойства изменяют незначительно, поэтому обычно их не закаливают. Закалку применяют для увеличения твердости, прочности и износостойкости деталей, получаемых из поковок. В практике обычно закаливают рабочие части различного технологического инструмента, измерительного инструмента, тяжелонагруженные и работающие на истирание детали машин.
Нагрев стали под закалку осуществляют в горнах или нагревательных печах. Детали в горны укладывают так, чтобы холодное дутье воздуха не попадало непосредственно на сталь. Нужно следить, чтобы нагрев происходил равномерно. Чем больше углерода и легирующих элементов содержит сталь, чем массивнее деталь и сложнее ее форма, тем медленнее должна быть скорость нагрева под закалку. Продолжительность выдержки при закалочной температуре ориентировочно принимается равной 0,2 от времени нагрева. Слишком длительная выдержка при закалочной температуре не рекомендуется, так как при этом интенсивно растут зерна и сталь теряет прочность.
Отпуск состоит в нагревании закаленной стали до температуры ниже Ас1 (см. рисунок), выдержке при этой температуре некоторое время и быстрого или медленного охлаждения, как правило, на воздухе. В процессе отпуска в металле структурных изменений не происходит, однако уменьшаются закалочные напряжения, твердость и прочность, а пластичность и вязкость увеличиваются. В зависимости от марки стали и от предъявляемых к детали требований по твердости, прочности и пластичности применяют следующие виды отпусков.
1. Высокий отпуск состоит в нагреве закаленной детали до температуры 450...650°С, выдержке при этой температуре и охлаждении. Углеродистые стали охлаждаются на воздухе, а хромистые, марганцовистые, хромокремниевые - в воде, так как медленное охлаждение их приводит к отпускной хрупкости. При таком отпуске почти полностью ликвидируются закалочные напряжения, увеличивается пластичность и вязкость, хотя заметно уменьшается твердость и прочность стали. Закалка с высоким отпуском по сравнению с отжигом, создает наилучшее соотношение между прочностью стали и ее вязкостью. Такое сочетание термообработки называют улучшением Улучшению подвергаютсильнонагруженные детали машии, изготовленные из углеродистых сталей с содержанием углерода 0,3...0,5%.
2. Средний отпуск состоит в нагреве закаленной детали до температуры 300...450°С, выдержке при этой температуре и охлаждении на воздухе. При таком отпуске увеличивается вязкость стали и снимаются внутренние напряжения в ней при сохранении достаточно большой твердости. Он применяется для деталей машин, работающих в условиях трения и динамических нагружеиий. 3. Низкий отпуск состоит в нагреве закалении детали до температуры 140...250 °С и охлаждении с любой скоростью. При таком отпуске почти не уменьшается твердость и вязкость стали, но зато снимаются внутренние закалочные напряжения. После такого отпуска детали нельзя нагружать динамическими нагрузками. Чаще всего его используют для обработки режущего и измерительного инструмента из углеродистых и легированных сталей.
89)Отжиг и нормализация
О́ТЖИГ, вид термической обработки материалов, заключающийся в нагреве до определенной температуры, выдержке и последующем, обычно медленном, охлаждении.
Отжигом называют термообработку, направленную на получение равновесной структуры.
Различают 2 два вида отжига:
- отжиг 1-го рода – в процессе отжига не происходит фазовой перекристаллизации;
- отжиг 2-го рода - осуществляется с фазовой перекристаллизацией
Отжиг 1-го рода
При отжиге первого рода не происходит структурных изменений, связанных с фазовыми превращениями, однако за счет возрастания подвижности атомов при нагреве частично или полностью устраняется химическая неоднородность, медленное охлаждение после отжига позволяет снизить внутренние напряжения. В металлах и сплавах при таком отжиге снимается наклеп, понижается твердость, возрастают пластичность и ударная вязкость. Разновидностями отжига первого рода являются: диффузионный (гомогенезирующий отжиг), рекристаллизационный отжиг (рекристаллизация), отжиг для снятия напряжения.
Отжиг 2-го рода
Отжиг 2-го рода является перекристаллизационным отжигом. Во время его проведения в материале происходит полиморфное или другое фазовое превращение, связанное с заменой данной фазы другой (фазовая перекристаллизация). Поэтому для изменения кристаллитов в поликристалле материал отжигают при температуре, превышающей температуру этого превращения. Так как фазовая перекристаллизация осуществляется путем зарождения и роста центров новой фазы, то меняя скорость нагрева и охлаждения, а также температуру перегрева (выше температуры полиморфного превращения), можно управлять величиной кристаллитов. Повышение скорости нагрева и охлаждения увеличивает число центров и измельчает зерно, перегрев укрупняет зерно.
При перекристаллизационном отжиге нагрев и последующее охлаждение может вызвать как частичную, так и полную замену исходной структуры. Полная перекристаллизация позволяет кардинально изменить строение сплава, уменьшить размер зерна, снять наклеп, устранить внутренние напряжения, т.е. полностью изменить структуру и свойства материала. При неполном отжиге структурные превращения происходят не полностью, с частичным сохранением исходной фазы. Неполный отжиг применяется в тех случаях, когда можно изменить строение второй фазы, исчезающей и вновь появляющейся при этом виде отжига.
НОРМАЛИЗАЦИЯ СТАЛИ
— процесс термич. обработки, заключающийся в нагреве стали на 30—50° выше верхней критич. точки Ас3, выдержке при этой темп-ре и охлаждении на воздухе. Нормализацию стали производят для уменьшения размера зерна, выросшего при перегреве во время горячей механич. обработки, цементации или сварки. При этом повышаются механич. св-ва, гл. обр. ударная вязкость. Для исправления сильно перегретой стали иногда производят нормализацию при теми-ре на 100—150° выше ACj (см. Перегрев стали). Нормализацию малоуглеродистой и среднеуглеродистой нелегированной и малолегированной конструкционной стали проводят также для улучшения механич. обрабатываемости. Во многих случаях нормализация стали — операция, подготовляющая структуру к последующей закалке. Среднелегированная и высоколегированная конструкционная стали, а также мартенситная нержавеющая сталь, нагретые выше критич. интервала и охлажденные на воздухе, подвергаются при этом частичной или полной закалке. Многие высоколегированные конструкционные и все мартенситные нержавеющие стали при нормализации подвергаются полной закалке. 90)Термомеханическая и Механотермическая обработка Термомеханическая обработка металлов (ТМО), совокупность операций деформации, нагрева и охлаждения (в различной последовательности), в результате которой формирование окончательной структуры металла, а следовательно, и его свойств происходит в условиях повышенной плотности и оптимального распределения несовершенств строения, созданных пластической деформацией. Т. о., особенностью этого способа изменения свойств металлических сплавов является сочетание операций обработки металлов давлением и термической обработки). Возможность применения ТМО определяется тем, что на процессы структурных превращений существ влияние оказывают присутствующие в реальных сплавах несовершенства строения (Дислокации, дефекты упаковки, вакансии). С другой стороны, в результате некоторых структурных изменений образуются новые несовершенства, а также происходит перераспределение имеющихся несовершенств. Отсюда механизм и кинетика структурных изменений при ТМО зависят от характера и плотности несовершенств строения и, в свою очередь, влияют на их количество и распределение. Механотермическая обработка припроектирования прогрессивных технологических процессов механообработки целесообразно рассматривать комбинированные схемы, основанные на совмещении: механической обработки (резание, пластическое деформирование) нагрева и охлаждения в одном технологическом цикле, которые можно условно назвать механотермической обработкой (МТ) при термомеханической обработке (ТМ). Изменение температурных условий процессов обработки производят с целью улучшения обрабатываемости некоторых марок сталей и сплавов, расширения в целом технологических возможностей механической обработки, а также для повышения эксплуатационных свойств (прочности, износостойкости и т. п.) деталей, обрабатываемых методами объемного или поверхностного пластического деформирования. |
91) Термопластичные полимеры способны многократно размягчаться при нагревании и отвердевать при охлаждении. Эти и многие другие свойства термопластичных полимеров объясняются линейным строением их макромолекул. При нагревании взаимодействие между молекулами ослабевает и они могут сдвигаться одна относительно другой, полимер размягчается, превращаясь при дальнейшем нагревании в вязкую жидкость. На этом свойстве базируются различные способы формования изделий из термопластов, а также соединение их сваркой.
Однако на практике не все термопласты так просто можно перевести в вязко-текучее состояние, так как температура начала термического разложения некоторых полимеров ниже температуры их текучести (поливинилхлорид, фторопласты и др.). В таком случае используют различные технологические приемы, снижающие температуру текучести (например, вводя пластификаторы) или задерживающие термодеструкцию (введением стабилизаторов, переработкой в среде инертного газа).
Линейным строением молекул объясняется также способность термопластов не только набухать, но и хорошо растворяться в правильно подобранных растворителях. Тип растворителя зависит от химической природы полимера. Растворы полимеров даже очень небольшой концентрации (2...5 %) отличаются довольно высокой вязкостью. Причиной этого являются большие размеры полимерных молекул по сравнению с молекулами обычных низкомолекулярных веществ. После испарения растворителя полимер вновь переходит в твердое состояние. На этом основано использование растворов термопластов в качестве лаков, красок, клеев и вяжущего компонента в мастиках и полимеррастворах.
92) Термореактивные полимеры
Молекулы термореактивных полимеров до их отверждения имеют линейное строение, такое же, как молекулы термопластичных полимеров, но размер молекул реактопластов намного меньше. В отличие от термопластов, у которых молекулы химически инертны и не способны соединяться друг с другом, молекулы термореактивных олигомеров химически активны. Они содержат либо двойные (ненасыщенные) связи, либо химически активные группы. Поэтому при определенных условиях (нагревании, облучении или добавлении веществ-отвердителей) молекулы термореактивных олигомеров соединяются друг с другом, образуя сплошную пространственную сетку, как бы одну гигантскую макромолекулу. После отверждения свойства полимеров изменяются: они перестают размягчаться при нагревании, не растворяются, а только набухают в растворителях, становятся более прочными, твердыми и термостойкими. К термореактивным полимерам, используемым в строительстве, относятся фенолоальдегидные, карбамидные, полиэфирные, эпоксидные и полиуретановые. Фенолоальдегидные полимеры - первые синтетические полимеры, которые в начале XX в. начали получать методом поликонденсации фенолов с альдегидами. В качестве фенольного сырья применяют фенол, крезол, ксиленол и резорцин, а альдегидного - формальдегид, фурфурол, уротропин и лигнин. |
93) Технологические и эксплуатационные свойства
94)Тугоплавкие металлы и их сплавы.
Тугоплавкими называют металлы, температура плавления которых выше, чем у железа.
Наибольшее значение в технике имеют тугоплавкие металлы Nb, Mo, Cr, Ta и W с температурой плавления соответственно 2468, 2625, 1275, 2996 и 3410 ОС.
Интерес к тугоплавким металлам и сплавам на их основе возрос в связи со строительством ракет, космических кораблей, атомных реакторов и развитием энергетических установок, отдельные детали и узлы которых работают при температурах до 1500–2000 ОС.
Молибден, вольфрам и хром обладают высокой жаропрочностью, однако они склонны к хрупкому разрушению из-за высокой температуры порога хладноломкости, которую особенно сильно повышают примеси внедрения С, N, Н и О. после деформации ниже температуры рекристаллизации (1100–1300ОС) порог хладноломкости молибдена и вольфрама понижается. Ниобий и тантал в отличие от вольфрама и молибдена – металлы с хорошей пластичностью и сворачиваемостью.
Молибден и вольфрам вЧистов виде используют в радио- и электронной промышленности (нити накаливания, листовые аноды, сетки, пружины катодов, нагреватели и т.д.) вследствие малого поперечного сечения захвата нейтронов и отсутствия взаимодействия с расплавленными щелочными металлами ниобий применяют для изготовления теплообменников атомных реакторов.
Жаропрочность чистых металлов сравнительно невелика. Более высокой жаропрочностью обладают сплавы на основе тугоплавких металлов. Повышение жаропрочности достигается в результате образования легированного твердого раствора или твердого раствора, который добавочно упрочняется мелкодисперсными выделениями типа карбидов ZrC, (Ti, Zr) C и др., оксидов (ZrO2) и т.д. Все тугоплавкие металлы обладают низкой жаропрочностью. Поэтому при температурах 600 – 800 ОС их нужно защищать от окисления.
Для молибдена и вольфрама лучшими считаются термодиффузионные силицидные покрытия (MoSi2, WSi2).
Поверхностные покрытия чаще применяют для деталей, работающих малый срок службы, или одноразового действия.
95)Углеродистая сталь
Сталь, не содержащая легирующих компонентов. В зависимости от содержания углерода У. с. подразделяют на низкоуглеродистую (до 0,25% С), среднеуглеродистую (0,25—0,6% С) и высокоуглеродистую (более 0,6% С). Различают У. с. обыкновенного качества и качественную конструкционную. К 1-й группе относится горячекатаная (сортовая, фасонная, толстолистовая, тонколистовая, широкополосная) и холоднокатаная (тонколистовая) сталь; во 2-ю входят горячекатаные и кованые заготовки диаметром (или толщиной) до 250 мм,калиброванная сталь и Серебрянка.
У. с. выплавляют в мартеновских, двухванных, дуговых печах и кислородных конвертерах. Для раскисления У. с. используют ферромарганец, ферросилиций, феррованадий, алюминий, титан и др.; по степени раскисления различают кипящую, полуспокойную и спокойную У. с. Для улучшения физико-химических и технологических свойств применяют микролегирование У. с. титаном, цирконием, бором, редкоземельными элементами. В результате микролегирования сталь приобретает мелкозернистую структуру, уменьшается степень зональной ликвации, снижаются загрязнённость стали неметаллическими включениями склонность к образованию трещин при горячей пластической деформации, повышается Ударная вязкость при отрицательных температурах, что даёт возможность применять У. с. в различных климатических зонах (от — 40 до 60 °С). У. с. разливают на слитки (сверху, сифоном) и заготовки (на машинах непрерывного литья); масса слитков достигает 35 т. Кроме того, У. с. используется для получения стальных отливок. Литая У. с. отличается от деформируемой стали подобного состава несколько меньшими пластичностью и ударной вязкостью.
рукoяткирубильникoв, щитки, из стaли – кoнструкциинaкoтoрыxкрeпят токоведущие чaсти, щиты, кoрпусa электрических мaшин.
95.Инструмента́льнаяуглеро́дистая сталь — сталь с содержанием углерода от 0,7 % и выше. Эта сталь отличается высокой твёрдостью и прочностью (после окончательной термообработки) и применяется для изготовления инструмента. Инструментальная углеродистая сталь делится на качественную и высококачественную. Содержание серы и фосфора в качественной инструментальной стали — 0,03 % и 0,035 %, в высококачественной — 0,02 % и 0,03 % соответственно.
Выпускается по ГОСТ 1435-99 следующих марок: У7; У8; У8Г; У9; У10; У11; У12; У13; У7А; У8А; У8ГА; У9А; У10А; У11А; У12А; У13А. Стандарт распространяется на углеродистую инструментальную горячекатаную, кованую, калиброванную сталь, серебрянку.
К группе качественных сталей относятся марки стали без буквы А(в конце маркировки), к группе высококачественных сталей, более чистых по содержанию серы и фосфора, а также примесей других элементов — марки стали с буквой А. Буквы и цифры в обозначении этих марок стали означают: У — углеродистая, следующая за ней цифра — среднее содержание углерода в десятых долях процента, Г — повышенное содержание марганца.
Достоинство углеродистых инструментальных сталей состоит в основном в их малой стоимости и достаточно высокой твёрдости по сравнению с другими инструментальными материалами. К недостаткам следует отнести малую износостойкость и низкую теплостойкость.
96. Упругая деформация. Упругой деформацией называют деформацию, влияние которой на форму, структуру и свойства тела устраняются после прекращения действия внешних сил, под действием которых происходит только незначительное относительное и обратимое смещение атомов. Пластическая деформация. При возрастании касательных напряжений выше определенной величины деформация становится необратимой. При снятии устраняется лишь упругая составляющая деформации. Часть деформации, которую называют пластической, остается. При пластической деформации необратимо изменяется структура металлов, а следовательно, и ее свойства. Схема упругой и пластической деформации металла с кубической структурой, подвергнутого действию касательных напряжений показана на рис.24. Скольжение в кристаллической решетке протекает по плоскостям и направлениям с наиболее плотной упаковкой атомов, где сопротивление сдвигу наименьшее, тем самым, образуя систему скольжений.
97. Многократное повторное нагружение может привести к разрушению при меньших напряжениях, чем временное сопротивление и даже предел текучести. Это явление называется усталостью металла, а разрушение – усталостным.
Способность металла сопротивляться усталостному разрушению называется выносливостью, а напряжения, при которых происходит разрушение –вибрационной прочностью Ơвб.
Усталостное разрушение происходит вследствие накопления числа дислокаций при каждом загружении и концентрации их около стыков зерен с последующим скоплением в большие группы, что приводит к рыхлению металла в этом месте и образованию трещин, которые развиваясь, приводят к разрыву. При каждом нагружении деформации в поврежденном месте нарастают. Линии разгрузки не совпадают с линиями нагрузки, образуя петли гистерезиса. Площадь петли характеризует энергию, затраченную при каждом цикле нагрузки на образование новых несовершенств в атомной структуре и дислокаций там, где образуются трещины, металл как бы перетирается, образуя гладкие истертые поверхности, затем трещина быстро развивается и происходит разрыв.
Вибрационная прочность
Вибрационная прочность зависит от числа циклов загружения и вида загружения.
При большом числе циклов кривая вибрационной прочности (кривая Вел Лера) асимметрически приближается к некоторому пределу, называемому пределом выносливости (усталости). Обычно проводят 2х106 циклов нагружения, чтобы определить выносливость, так как меньшее количество циклов мало отличается от предела усталости.
99.Физические свойства. К физическим свойствам металлов относят цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, теплоемкость, электропроводность, магнитные свойства и др. Цветом называют способность металлов отражать световое излучение с определенной длиной волны. Например, медь имеет розово-красный цвет, алюминий - серебристо-белый. Плотность металла характеризуется его массой, заключенной в единице объема. По плотности все металлы делят на легкие (менее 4500 кг/м3) и тяжелые. Плотность имеет большое значение при создании различных изделий. Например, в самолето- и ракетостроении стремятся использовать более легкие металлы и сплавы (алюминиевые, магниевые, титановые), что способствует снижению массы изделий. Температурой плавления называют температуру, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие металлы (вольфрам 3416°С, тантал 2950°С, титан 1725°С, и др.) и легкоплавкие (олово 232°С, свинец 327°С, цинк 419,5°С, алюминий 660°С). Температура плавления имеет большое значение при выборе металлов для изготовления литых изделий, сварных и паяных соединений, термоэлектрических приборов и других изделий. В единицах СИ температуру плавления выражают в градусах Кельвина (К). Теплопроводностью называют способность металлов передавать тепло от более нагретых к менее нагретым участкам тела. Серебро, медь, алюминии обладают большой теплопроводностью. Железо имеет теплопроводность примерно в три раза меньше, чем алюминий, и в пять раз меньше, чем медь. Теплопроводность имеет большое значение при выборе материала для деталей. Например, если металл плохо проводит тепло, то при нагреве и быстром охлаждении (термическая обработка, сварка) в нем образуются трещины. Некоторые детали машин (поршни двигателей, лопатки турбин) должны быть изготовлены из материалов с хорошей теплопроводностью. В единицах СИ теплопроводность имеет размерность Вт/(м∙К). Тепловым расширением называют способность металлов увеличиваться в размерах при нагревании и уменьшаться при охлаждении. Тепловое расширение характеризуется коэффициентом линейного расширения α=(l2-l1)/[l1(t2-t1)], где l1 и l2длины тела при температурах t1 и t2. Коэффициент объемного расширения равен 3α. Тепловые расширения должны учитываться при сварке, ковке и горячей объемной штамповке, изготовлении литейных форм, штампов, прокатных валков, калибров, выполнении точных соединений и сборке приборов, при строительстве мостовых ферм, укладке железнодорожных рельс. Теплоемкостью называют способность металла при нагревании поглощать определенное количество тепла. В единицах СИ имеет размерность Дж/К. Теплоемкость различных металлов сравнивают по величине удельной теплоемкости - количеству тепла, выраженному в больших калориях, которое требуется для повышения температуры 1 кг металла на 1°С (в единицах СИ - Дж/(кг∙К). Способность металлов проводить электрический ток оценивают двумя взаимно противоположными характеристиками -электропроводностью и электросопротивлением. Электрическая проводимость оценивается в системе СИ в сименсах (См), а удельная электропроводность - в Cм/м, аналогично электросопротивление выражают в омах (Ом), а удельное электросопротивление — в Ом/м. Хорошая электропроводность необходима, например, для токонесущих проводов (медь, алюминий). При изготовлении электронагревателей приборов и печей необходимы сплавы с высоким электросопротивлением (нихром, константан, манганин). С повышением температуры металла его электропроводность уменьшается, а с понижением - увеличивается. Магнитные свойства характеризуются абсолютной магнитной проницаемостью или магнитной постоянной, т. е. способностью металлов намагничиваться. В единицах СИ магнитная постоянная имеет размерность Гн/м. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, называемые ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов. Химические свойства. Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией. Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур. Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени. Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.
100.Химико-термическая обработка (ХТО) - нагрев и выдержка металлических (а в ряде случаев и неметаллических) материалов при высоких температурах в химически активных средах (твердых, жидких, газообразных).
В подавляющем большинстве случаев химико-термическую обработку проводят с целью обогащения поверхностных слоев изделий определенными элементами. Их называют, насыщающими элементами или компонентами насыщения.
В результате ХТО формируется диффузионный слой, т.е. изменяется химический состав, фазовый состав, структура и свойства поверхностных слоев. Изменение химического состава обуславливает изменения структуры и свойств диффузионного слоя.
однокомпонентные: цементация - насыщение углеродом; азотирование - насыщение азотом; алитирование - насыщение алюминием; хромирование - насыщение хромом;борирование - насыщение бором; силицирование - насыщение кремнием;
многокомпонентные: нитроцементация (цианирование, карбонитрация) - насыщение азотом и углеродом; боро- и хромоалитирование - насыщение, бором или хромом и алюминием, соответственно; хромосилицирование – насыщение хромом и кремнием и т.д.
101. МЕЖА́ТОМНОЕ ВЗАИМОДЕ́ЙСТВИЕ, взаимодействие между атомами как свободными, так и входящими в состав одной или разных молекул, кристаллов и т.д.
Межатомное взаимодействие может осуществляться между атомами, находящимися как в одинаковых, так и в различных энергетических состояниях. Межатомное взаимодействие характеризуется потенциальной энергией взаимодействия, зависящей от взаимного расположения взаимодействующих атомов и от расстояния между их ядрами. Межатомное взаимодействие связано в основном с электростатическими и электромагнитными силами, действующими между атомами. Но и упругое столкновение атомов идеальных газов также является межатомным взаимодействием.
Различают химические (валентные) и физические (невалентные) межатомные взаимодействия
К химическим межатомным взаимодействиям, которые являются причиной образованияхимической связи в молекулах, атомных и ионных кристаллах, металлах и сплавах, относятся ковалентная связь (гомополярная, обменная или донорно-акцепторная),ионная связь (гетерополярная), металлическая связь.
К физическим межатомным взаимодействиям относятся ван-дер-ваальсова связь. Ван-дер-ваальсовое межатомное взаимодействие обусловливает межмолекулярное взаимодействие и более характерно именно для него.
102.
Медь и ее сплавы.
Титан и его сплавы
Области применения титановых сплавов:
Алюминий и его сплавы.
Алюминиевые сплавы.
Деформируемые сплавы, не упрочняемые термической обработкой.
Деформируемые сплавы, упрочняемые термической обработкой.
Литейные алюминиевые сплавы.
Магний и его сплавы.
Деформируемые магниевые сплавы.
Литейные магниевые сплавы.
Медь и ее сплавы.
Латуни.
Бронзы.
103.Чугу́н — сплав железа с углеродом с содержанием более 2,14 % (точка предельной растворимости углерода в аустените на диаграмме состояний). Углерод в чугуне может содержаться в виде цементита и графита. В зависимости от формы графита и количества цементита, выделяют: белый, серый, ковкий и высокопрочные чугуны. Чугуны содержат постоянные примеси (Si, Mn, S, P), а в некоторых случаях также легирующие элементы (Cr, Ni, V, Al и др.). Как правило, чугун хрупок.
Виды чугуна
Белый чугун
В белом чугуне весь углерод находится в виде цементита. Структура такого чугуна — перлит, ледебурит и цементит. Такое название этот чугун получил из-за светлого цвета излома.
Серый чугун
Серый чугун это сплав железа, кремния (от 1,2- 3,5 %) и углерода, содержащий также постоянные примеси Mn, P, S. В структуре таких чугунов большая часть или весь углерод находится в виде графита пластинчатой формы. Излом такого чугуна из-за наличия графита имеет серый цвет.
Ковкий чугун
Ковкий чугун получают длительным отжигом белого чугуна, в результате которого образуется графит хлопьевидной формы. Металлическая основа такого чугуна: феррит и реже перлит. Ковкий чугун получил свое название из-за повышенной пластичности и вязкости (хотя обработке давлением не подвергается). Ковкий чугун обладает повышенной прочностью при растяжении и высоким сопротивлением удару. Из ковкого чугуна изготовляют детали сложной формы: картеры заднего моста автомобилей, тормозные колодки, тройники, угольники и т. д.
Маркируется ковкий чугун двумя буквами и двумя числами, например КЧ 370-12. Буквы КЧ означают ковкий чугун, первое число—предел прочности (в МПа) на разрыв, второе число — относительное удлинение (в процентах), характеризующее пластичность чугуна.
[Высокопрочный чугун
Высокопрочный чугун имеет в своей структуре шаровидный графит, который образуется в процессе кристаллизации. Шаровидный графит ослабляет металлическую основу не так сильно как пластинчатый, и не является концентратором напряжений.
Половинчатый чугун
В половинчатом чугуне часть углерода (более 0,8 %) содержится в виде цементита. Структурные составляющие такого чугуна — перлит, ледебурит и пластинчатый графит.
104.Электрическая прочность — величина, позволяющая оценить способность диэлектрика противостоять разрушению его электрическим напряжением. Механическая прочность электроизоляционных и других материалов оценивается при помощи следующих характеристик: предел прочности материала при растяжении, относительное удлинение при растяжении, предел прочности материала при сжатии, предел прочности материала при статическом изгибе, удельная ударная вязкость, сопротивление раскалыванию.
Удельное
электрическое сопротивление
металлических
магнитных материалов зависит от состава
и направления намагниченности по
отношению к направлению движения
электронов проводимости. Электрические
свойства технических Fe, Co, Ni показаны
в таблице.
В ферритах по сравнению с металлическими ферромагнетиками удельное электрическое сопротивление много выше, сопоставимо с полупроводников и может меняться в широких пределах в зависимости от состава, типа элементов структуры, вида примесей. Так, для феррита иттрия удельное сопротивление 1010-1012 Ом . м, для феррита никеля 103-105 Ом . м, для феррита лития 1-10 Ом . м. Энергия активации проводимости ферритов находится в пределах 0.2-2 эВ. В ферритах часто наблюдается поляронная(прыжковая) проводимость, обусловленная перескоком локализованных электронов из одного состояния в другое. Поляроны - квазичастицы, образованные локализованными на ионах электронами вместе с окружающим их полем поляризации. В случае поляронов малого радиуса энергия ионизации примесного центра 0.2-0.6 эВ.
Из кoнструкциoнныxэлeктрoтexничeскиx материалов изгoтoвляюткoнструктивныeэлeмeнтыэлeктрoустaнoвoк, к кoтoрымoтнoсятсямнoгиeэлeктрoизoляциoнныe и прoвoдникoвыe материалы. Примeрoмэтoгoявляeтся ряд издeлий из стaли, плaстмaссы, кeрaмики. Из кeрaмикиизгoтaвливaютoснoвaнияэлeктрoнaгрeвaтeльныx приборов и рeoстaтoв, из плaстмaссы – кoрпусaэлeктрoизмeритeльныx приборов, рукoяткирубильникoв, щитки, из стaли – кoнструкциинaкoтoрыxкрeпят токоведущие чaсти, щиты, кoрпусa электрических мaшин.
