
- •4. Асбестовые материалы
- •5. Атомно-кристаллическое строение металлов
- •Прочность на сжатие
- •Бумажные материалы
- •ВоПрОс 16:
- •ВоПрОс 17:
- •ВоПрОс 18:
- •ВоПрОс 19:
- •ВоПрОс 20:
- •20. Дефекты кристаллического строения металлов: точечные, линейные, поверхностные. Их влияние на свойства. (влияние на св-ва не нашел) Дефекты строения кристаллических тел
- •Точечные дефекты
- •Линейные дефекты
- •Поверхностные дефекты
- •21.Диаграмма состояния железо—цементит Фазы диаграммы железо — цементит
- •24.Жаропрочность. Ползучесть. Характеристики жаропрочности. Методы повышения жаропрочности.
- •История
- •[Править]Причины и свойства
- •[Править]Кривая ползучести
- •[Править]Стадии ползучести
- •[Править]Ползучесть и пластичность
- •[Править]Жаропрочность
- •Пути повышения жаропрочности и ресурса.
- •25.Жаростойкость металлов и сплавов и методы ее повышения.
- •Влияние хрома на жаростойкость хромистой стали
- •26.Железо и его свойства
- •Физические свойства
- •[Править]Химические свойства [править]Характерные степени окисления
- •[Править]Свойства простого вещества
- •27.Железо и сплавы на его основе
- •28.Закалка и отпуск сталей. Виды закалок.
- •Виды закалки металла
- •Закалка в одной среде
- •Закалка в двух средах
- •Ступенчатая закалка
- •Недостатки ступенчатой закалки
- •Закалка с подстуживанием
- •Поверхностная закалка стали
- •Поверхностная закалка при нагреве ацетилено-кислородным пламенем
- •Поверхностная закалка токами высокой частоты
- •29.Защита металлов от коррозии
- •30 Инструментальные стали и сплавы
- •Инструментальные стали
- •Твердые металлокерамические сплавы
- •40 Композиционные материалы с металлической матрицей
- •61. Основные механические свойства, характеризующие прочность и пластичность
- •62. Основные понятия о строении, структуре и свойствах материалов
- •63. Основы теории сплавов. Понятие о компоненте, фазе, микро- и макроструктуре. Типы фаз
- •64. Отжиг и нормализация, закалка
- •65. Отпуск и искусственное старение
- •66. Пленкообразующие материалы
- •67. Поверхностная закалка
- •68. Полимерные вещества
- •69. Полимерные пластические материалы
- •70. Порошковые металлические материалы
- •2. Структура и свойства чугуна
Поверхностная закалка при нагреве ацетилено-кислородным пламенем
Нагрев изделия производится ацетилено-кислородным пламенем. Пламенная горелка (рис. 67), движущаяся вдоль изделия с определенной скоростью, нагревает его поверхность.
Вслед за горелкой с той же скоростью движется трубка, подающая воду, с помощью которой производится охлаждение изделия.
Глубина прогрева и температура нагрева регулируются скоростью перемещения горелки и расстоянием горелки от изделия.
Поверхностная закалка токами высокой частоты
Нагрев изделий токами высокой частоты вызывает разогрев поверхностного слоя изделия.
Это объясняется тем, что токи высокой частоты распространяются с неравномерной плотностью по сечению. Чем больше частота тока, тем на меньшую глубину изделия токи проникают.
Благодаря этому возникает большая плотность тока у поверхности изделия, вызывающая весьма быстрый разогрев поверхностных слоев металла.
Этот метод имеет ряд преимуществ: высокую производительность, достаточную легкость регулирования глубины закаленного слоя, получение большей твердости, чем при обычных методах закалки, отсутствие окалины и коробления.
Применяемый для этой цели электрический ток получают от специальных генераторов, дающих переменный ток с частотой до 10 млн. гц (т.е. перемен направления тока в секунду). Ток городской сети имеет частоту 50 гц.
Нагрев изделия осуществляется индуктором, по которому проходят токи высокой частоты и большой силы.
Индуктор наводит (индуктирует) токи в изделии, помещенном внутри него (рис. 68).
Индуктор изготовляют из полых медных трубок, внутри которых циркулирует охлаждающая вода, поэтому он сам не разогревается за тот короткий промежуток времени, за который деталь успевает нагреться до необходимой температуры.
Форма индуктора должна точно повторить форму изделия, только тогда изделие закалится да одну и ту же глубину по всему сечению. Затруднения бывают при сложной форме детали, что ограничивает применение этого метода.
Охлаждение нагретой детали осуществляется чаще всего либо дополнительным дождевым устройством, либо водой, циркулирующей внутри индуктора.
В связи с тем что новый тип детали требует изготовления нового индуктора, этот метод целесообразно применять при наличии однотипных деталей в массовом или крупносерийном производстве.
29.Защита металлов от коррозии
Применение различных методов защиты металлов от коррозии позволяет в какой-то степени свести к минимуму потери металла от коррозии. В зависимости от причин, вызывающих коррозию, различают следующие методы защиты.
1) Обработка внешней среды, в которой протекает коррозия. Сущность метода заключается либо в удалении из окружающей среды тех веществ, которые выполняют роль деполяризатора, либо в изоляции металла от деполяризатора. Например, для удаления из воды кислорода используют специальные вещества или кипячение. Удаление кислорода из коррозионной среды называется деаэрацией. Максимально замедлить процесс коррозии можно путем введения в окружающую среду специальных веществ – ингибиторов. Широкое распространение получили летучие и парофазные ингибиторы, которые защищают от атмосферной коррозии изделия из черных и цветных металлов при хранении, транспортировке и т.д. Механизм действия ингибиторов заключается в том, что их молекулы адсорбируются на поверхности металла, препятствуя протеканию электродных процессов.
2) Защитные покрытия. Для изоляции металла от окружающей среды на него наносят различного рода покрытия: лаки, краски, металлические покрытия. Наиболее распространенными являются лакокрасочные покрытия, однако их механические свойства значительно ниже, чем у металлических. Последние по характеру защитного действия можно разделить на анодные и катодные.
Анодные покрытия. Если на металл нанести покрытие из другого, более электроотрицательного металла, то в случае возникновения условий для электрохимической коррозии * разрушаться будет покрытие, т.к. оно будет выполнять роль анода. В этом случае покрытие называется анодным. Примером анодного покрытия может служить хром, нанесенный на железо. В случае нарушения целостности покрытия при контакте с влажным воздухом будет работать гальванический элемент *:
А (–) Cr H2O, O2 Fe (+) К
на аноде: Cr – 2e → Cr2+
на катоде: 2 H2O + O2 + 4e → 4 OH–
Cr2+ + 2 OH– → Cr(OH)2
Гидроксид хрома (II) окисляется кислородом воздуха до Cr(OH)3:
4 Cr(OH)2 + 2H2O + O2 → 4 Cr(OH)3
Таким образом, в результате электрохимической коррозии разрушается анодное покрытие.
Катодные покрытия. У катодного покрытия стандартный электродный потенциал * более положителен, чем у защищаемого металла. Пока слой покрытия изолирует металл от окружающей среды, электрохимическая коррозия не протекает. При нарушении сплошности катодного покрытия оно перестает защищать металл от коррозии. Более того, оно даже интенсифицирует коррозию основного металла, т.к. в возникающей гальванопаре анодом служит основной металл, который будет разрушаться. В качестве примера можно привести оловянное покрытие на железе (луженое железо). Рассмотрим работу гальванического элемента, возникающего в этом случае.
А (–) Fe H2O, O2 Sn (+) К
на аноде: Fe – 2e → Fe2+
на катоде: 2 H2O + O2 + 4e → 4 OH–
Fe2+ + 2 OH– → Fe(OH)2
Разрушается защищаемый металл. Таким образом, при сравнении свойств анодных и катодных покрытий можно сделать вывод, что наиболее эффективными являются анодные покрытия. Они защищают основной металл даже в случае нарушения целостности покрытия, тогда как катодные покрытия защищают металл лишь механически.
3) Электрохимическая защита. Различают два вида электрохимической защиты: катодная и протекторная. В обоих случаях создаются условия для возникновения на защищаемом металле высокого электроотрицательного потенциала.
Протекторная защита. Защищаемое от коррозии изделие соединяют с металлическим ломом из более электроотрицательного металла (протектора). Это равносильно созданию гальванического элемента, в котором протектор является анодом и будет разрушаться. Например, для защиты подземных сооружений (трубопроводов) на некотором расстоянии от них закапывают металлолом (протектор), присоединив его к сооружению (рисунок 8.3).
Рисунок 8.3 – Схема протекторной защиты. А – трубопровод; Б – протектор; В – проводник
Катодная защита отличается от протекторной тем, что защищаемая конструкция, находящаяся в электролите * (почвенная вода), присоединяется к катоду внешнего источника тока. В ту же среду помещают кусок металлолома, который соединяют с анодом внешнего источника тока (рисунок 8.4).
Рисунок 8.4 – Схема катодной защиты. А – конструкция; Б – протектор
Металлический лом подвергается разрушению, предохраняя тем самым от разрушения защищаемую конструкцию.
Во многих случаях металл предохраняет от коррозии образующаяся на его поверхности стойкая оксидная пленка (так, на поверхности алюминия образуется Al2O3, препятствующий дальнейшемуокислению металла). Однако некоторые ионы, например Cl–, разрушают такие пленки и тем самым усиливают коррозию.