Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БЖД ПРАКТЧ2.12год.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
862.72 Кб
Скачать

4.2 Определение концентрации паров горючей жидкости в воздухе газоанализатором пгф-2м

4.2.1 Описание прибора

Переносной газоанализатор Файнберга (ПГФ) во взрывозащищенном исполнении (рис.4.3) применяют для контроля загазованности атмосферы, содержащей горючие вещества. Прибор изготовлен в соответствии с ранее действовавшими «Правилами изготовления взрывозащищенного и рудничного электрооборудования (ПИВРЭ, 1969 г.)» и имеет обозначение ПГФ-2М-И3Г, где буква «И» показывает, что оборудование «искробезопасное»; цифра «3» обозначает величину щелевого (фланцевого) зазора электрооборудования (0,35-0,65 мм); буква «Г» обозначает температурный класс (135-200С).

а) принципиальная «пневматическая (газовоздушная)» схема; б) панель прибора;

1 – измерительная спираль; 2 – рабочая камера; 3 – ручной насос; 4 – трехходовой кран; 5 – миллигальванометр; 6 – переключатель пределов измерения; 7 – сравнительная камера; 8 – переключатель «Контроль-Анализ»; 9 – кнопка «накал»

Рисунок 4.3 – Переносной газоанализатор Файнберга ПГФ - 2М – И3Г

Принцип действия термохимического газоанализатора ПГФ-2М-И3Г (рис.4.3) основан на повышении электрического сопротивления платиновой измерительной спирали (1) при каталитическом сжигании анализируемого горючего газа (пара). В рабочую камеру подается проба горючего газа (пара) в смеси с воздухом с помощью ручного насоса (3), смонтированного в общем блоке с двумя камерами ПГФ. Рукоятка насоса выведена на панель. Засасывание газа в рабочую камеру производится через трехходовой кран (4) с двумя штуцерами для присоединения газозаборной линии и засасывания чистого воздуха. В обоих штуцерах установлены калиброванные диафрагмы.

Трехходовой кран позволяет, не снимая шланга для забора газа, проверить нулевую точку прибора по воздуху поворотом крана, а также произвести двукратное разбавление газа воздухом, соединив измерительную камеру ПГФ одновременно с обоими штуцерами.

На шкале миллигальванометра (5) нанесены три реперные точки для установки тока накала, обозначенные красным треугольником и индексами I, II, III. На внутренней стороне крышки корпуса ПГФ имеется таблица (табл.4.2) для расчета концентрации горючего газа (пара) в воздухе по показаниям на шкале указателя. Погрешность измерений не более 0,5%.

ПГФ во взрывозащищенном исполнении можно применять для определения мест утечек горючих газов и паров. Для этого газозаборный шланг подносят к предполагаемому месту утечки и насосом отбирают пробу. Определение производят сначала по «Пределу-2», а если стрелка указателя отклоняется незначительно, то по «Пределу-1».

4.2.2 Порядок выполнения работы

  1. Подготовку прибора к работе осуществляет лаборант. Подготовка заключается в установке постоянной силы тока с помощью рукоятки реостата «Ток»; отборе чистого воздуха в сравнительную камеру (7) и установке стрелки на ноль с помощью рукоятки реохорда «Нуль».

  2. Для измерения концентрации горючего пара:

    1. установите трёхходовой кран (4) в положение «Газ-воздух» (двукратное разбавление газа воздухом), переключатель (8) – в положение «Анализ» и переключатель (6) – в положение «Пр-2»;

    2. с помощью насоса (3) отберите пробу паров этанола;

    3. нажмите кнопку (9) «Накал» и отсчитайте максимальное отклонение стрелки по шкале миллигальванометра (5).

  3. При малых отклонениях стрелки по шкале миллигальванометра (5):

    1. установите трёхходовой кран (3) в положение «Газ», переключатель (8) – в положение «Анализ», переключатель (6) – в положение «Пр-2»;

    2. отберите пробу паров этанола;

    3. нажмите кнопку (9) и отсчитайте отклонение стрелки. Если оно будет мало, то переключатель (6) установите в положение «Пр-1» и прокачайте ещё раз исследуемый воздух; нажмите кнопку (9) и отсчитайте максимальный отброс стрелки.

  4. Зафиксированную миллигальванометром концентрацию с учётом данных табл.4.2 запишите в протокол 4.2.

Таблица 4.2 – Расчет концентрации в % по объему

газ

пропан

диэтиловый эфир

этиловый спирт

коксовый газ

этилен

пределы

1

2

1

2

1

2

1

2

1

2

деления

шкалы

1

0,10

0,40

0,08

0,40

0,20

0,65

0,20

1,00

0,05

0,25

2

0,18

0,80

0,16

0,80

0,30

1,25

0,36

1,80

0,10

0,55

3

0,25

1,20

0,24

1,20

0,40

1,80

0,48

2,40

0,15

0,90

4

0,33

1,60

0,32

1,70

0,50

2,80

0,60

3,00

0,20

1,40

5

0,40

2,00

0,40

2,20

0,65

3,70

1,00

4,00

0,25

2,00

  1. Выберите в приложении Д коэффициенты безопасности Кб (cо степенью надёжности 0,999) и Кб (cо степенью надёжности 0,999999). Основываясь на величине нижнего концентрационного предела распространения пламени (НКПРП, % (об.)), определите предельно допустимые взрывобезопасные концентрации (ПДВК, % (об.)):

ПДВК = НКПРП / Кб (4.5)

ПДВК = НКПРП / Кб (4.6)

  1. Результаты расчетов внесите в протокол 4.2.

  2. Сравните измеренную концентрацию с ПДВК и сделайте вывод о возможности распространения пламени и возникновения взрыва.

Протокол 4.2

№ п.п.

Наименование показателя

Единица

измерения

Значение

показателя

1

Наименование вещества

---

2

Атмосферное давление Рt

мм рт. ст.

3

Температура воздуха tt

°С

4

Измеренная концентрация С

% об.

5

НКПРП (прил.Д)

% об.

6

ВКПРП (прил.Д)

% об.

7

Коэффициент безопасности (прил.Д)

Кб

---

Кб

---

8

Предельно допустимая взрывобезопасная концентрация

ПДВК

% об.

ПДВК

% об.

ЛАБОРАТОРНАЯ РАБОТА № 5

Определение температуры вспышки и температуры воспламенения горючих жидкостей

Цель работы

  1. Определить температуру вспышки индивидуальных органических веществ.

  2. Определить температуру воспламенения индивидуальных органических веществ.

Введение

Температура вспышки ориентировочно характеризует температурные условия, при которых жидкость становится огнеопасной в условиях аварийного разлива или в открытых ёмкостях.

Температура вспышки – наименьшая температура конденсированного вещества, при которой в условиях специальных испытаний над ее поверхностью образуются пары, способные вспыхивать в воздухе от источника зажигания; устойчивое горение при этом не возникает.

Температуру вспышки определяют в открытом тигле и в закрытом тигле на специально предназначенных для этих целей приборах.

Экспериментальный метод определения температуры вспышки основан на нагревании определенной массы вещества с заданной скоростью: периодически зажигая выделяющиеся пары, устанавливают наличие или отсутствие воспламенения при фиксируемой температуре.

Значения температур вспышки используют при оценке качества нефтепродуктов, классификации жидкостей по степени пожаровзрывоопасности, а также при категорировании производственных помещений по взрывопожарной и пожарной опасности.

По температуре вспышки (tвсп) жидкости делятся на легковоспламеняющиеся (ЛВЖ) и горючие (ГЖ). К ЛВЖ относятся жидкости с tвсп в закрытом тигле не выше 61°С или в открытом тигле не выше 66°С. В свою очередь, ЛВЖ подразделяются по температуре вспышки на три разряда (табл.5.1). Горючая жидкость (ГЖ) – жидкость, способная самостоятельно гореть после удаления источника зажигания и имеющая tвсп выше 61 (в закрытом тигле) или 66°С (в открытом тигле).

Таблица 5.1 – Классификация легковоспламеняющихся жидкостей

Разряд ЛВЖ

Наименование разряда ЛВЖ

Температура вспышки, °С

в закрытом тигле (з.т.)

в открытом тигле (о.т.)

I

Особо опасные

не выше –18

не выше –13

II

Постоянно опасные

от –18 до 23

от –13 до 27

III

Опасные при повышенной температуре

от 23 до 61 включительно

от 27 до 66 включительно

Типичными представителями особо опасных ЛВЖ (I разряд) являются: диэтиловый эфир, ацетон, бензины и др. Эти вещества обладают высоким давлением насыщенного пара при обычных температурах хранения. В жаркую погоду они создают довольно высокое давление внутри сосудов, что увеличивает опасность.

Постоянно опасные ЛВЖ (II разряд) – это бензол, этиловый спирт и др. Жидкости II разряда опаснее жидкостей I разряда, так как они при комнатной температуре способны создавать взрывоопасные смеси в закрытых сосудах.

К жидкостям III разряда – опасным при повышенной температуре воздуха ЛВЖ – относятся: скипидар, керосин, уайт-спирит и др.

Температура воспламенения  наименьшая температура вещества, при которой в условиях специальных испытаний вещество выделяет горючие пары и газы с такой скоростью, что при воздействии на них источника зажигания наблюдается воспламенение; при этом образуется устойчивое горение.

Сущность экспериментального метода определения температуры воспламенения заключаетя в нагревании определенной массы с заданной скоростью: периодически зажигая выделяющиеся пары, устанавливают наличие или отсутствие воспламенения при определенной температуре. При температуре воспламенения устанавливается постоянный (стационарный) процесс горения.

Значение температуры воспламенения применяют: при определении группы горючести вещества; при оценке пожарной опасности оборудования и технологических процессов, связанных с переработкой горючих веществ; при разработке мероприятий по обеспечению пожарной безопасности. Его необходимо также включать в стандарты и технические условия на жидкости.

Справочные данные используемых в работе веществ приведены в приложении Д.