Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект по электротехнике2.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
1.84 Mб
Скачать

7.2. Синхронные машины

7.2.1. Общие сведения

У синхронных электрических машин ротор в установившемся режиме вращается с угловой скоростью вращающегося магнитного поля, создаваемого токами в фазных обмотках статора, подобного статору асинхронной машины. Это достигается тем, что ротор синхронной машины представляет собой обычно электромагнит или реже постоянный магнит с числом пар полюсов, равным числу пар полюсов вращающегося магнитного поля. Взаимодействие полюсов вращающегося магнитного поля и полюсов ротора обеспечивает постоянную частоту вращения последнего независимо от момента на валу. Это свойство синхронных машин позволяет применять их в качестве двигателей для привода механизмов с постоянной частотой вращения. Распространенность синхронных двигателей не столь широка, как асинхронных, но в ряде случаев, например в металлургии для главных приводов непрерывной прокатки, они необходимы. Единичная мощность синхронного двигателя в приводах большой мощности достигает нескольких десятков мегаватт.

Основной областью применения синхронных машин является их работа в качестве промышленных генераторов для выработки электрической энергии на электростанциях.

Единичная мощность современных электрогенераторов достигает 1500 MBА.

7.2.2. Устройство синхронной машины

Основными частями синхронной машины являются статор и ротор, причем статор не отличается от статора асинхронной машины (см. рис. 7.1). Сердечник статора собран из изолированных друг от друга пластин электротехнической стали и укреплен внутри массивного корпуса. В пазах с внутренней стороны статора размещена в большинстве случаев трехфазная обмотка.

Рис. 7.31

Рис. 7.30

Ротор синхронной машины представляет собой электромагнит — явнополюсный (рис. 7.30, где 1 — полюсы; 2 — полюсные катушки;

3 — сердечник ротора; 4 — контактные кольца) или неявнополюсный (рис. 7.31, где 1 — сердечник ротора; 2 — пазы с обмоткой; 3 — контактные кольца). Ток в обмотку ротора поступает через контактные кольца и щетки от внешнего источника постоянного тока — возбудителя.

Для получения синусоидальной ЭДС в проводах фазных обмоток статора необходимо, чтобы индукция в воздушном зазоре, создаваемая магнитным полем тока ротора, распределялась по синусоидальному закону вдоль окружности ротора. В явнополюсной машине это достигается увеличением ширины воздушного зазора от середины полюса к краям. В быстроходных машинах с неявными полюсами используется соответствующее распределение обмотки возбуждения вдоль окружности ротора.

У многополюсной синхронной машины ротор имеет р пар полюсов, а токи в обмотке статора образуют тоже р пар полюсов вращающегося магнитного поля как у асинхронной машины. Ротор должен вращаться с частотой вращения поля, следовательно, его синхронная частота вращения

п = 60f. (7.29)

При стандартной промышленной частоте 50 Гц максимальная частота вращения, соответствующая двухполюсной (р = 1) машине, будет 3000об/мин. Это частота вращения современного турбоагрегата, состоящего из первичного двигателя — паровой турбины и неявнополюсного синхронного генератора (турбогенератора).

У гидроагрегата гидравлическая турбина вращается относительно медленно. Это вынуждает изготовлять гидрогенераторы многополюсными, с явными полюсами и в большинстве случаев — с вертикальным валом. Частота вращения роторов этих генераторов — от 60 до нескольких сотен оборотов в минуту, чему соответствует несколько десятков пар полюсов. Вследствие относительно малых частот вращения генераторы к гидравлическим турбинам имеют значительно большую массу на единицу мощности — свыше 8 кг/(кВА), чем генераторы к паровым турбинам — менее 2,5 кг/(кВА).

Ограничимся в дальнейшем анализом неявнополюсных машин.