
- •7. Машины переменного тока
- •7.1. Асинхронные машины
- •7.1.1. Общие сведения
- •7.1.2. Устройство трехфазной асинхронной машины
- •7.1.3. Режимы работы трехфазной асинхронной машины
- •7.1.4. Уравнение электрического состояния фазы статора
- •7.1.5 Уравнение электрического состояния фазы ротора
- •7.1.6 Баланс магнитодвижущих сил в асинхронном двигателе
- •7.1.7 Схема замещения фазы асинхронного двигателя
- •7.1.8. Векторная диаграмма фазы асинхронного двигателя
- •7.1.9. Энергетический баланс асинхронного двигателя
- •7.1.10. Вращающий момент асинхронного двигателя
- •7.1.11. Механическая характеристика асинхронного двигателя
- •7.1.12. Рабочие характеристики асинхронного двигателя
- •7.1.13. Пуск асинхронного двигателя в ход
- •7.1.14. Методы регулирования частоты вращения асинхронных двигателей
- •71.15. Двухфазные и однофазные асинхронные двигатели
- •7.2. Синхронные машины
- •7.2.1. Общие сведения
- •7.2.2. Устройство синхронной машины
- •7.2.3. Режимы работы синхронной машины
- •7.2.4. Уравнение электрического состояния фазы синхронного генератора
- •7.2.5. Схема замещения и векторная диаграмма фазы
- •7.2.6. Характеристики синхронного генератора
- •7.2.7. Электромагнитный момент и угловая характеристика
- •7.2.9. Регулирование активной и реактивной мощностей
- •7.2.10. Включение синхронного генератора на параллельную работу с системой
- •7.2.11. Электромагнитный момент и угловая характеристика
- •7.2.12. Регулирование активной и реактивной мощностей
- •7.2.13. Пуск синхронного двигателя в ход
- •8. Машины постоянного тока
- •8.1. Общие сведения
- •8.2. Устройство машины постоянного тока
- •8.3. Режимы работы машины постоянного тока
- •8.4. Электродвижущая сила и электромагнитный момент машин постоянного тока
- •8.5. Реакция якоря
- •8.6. Коммутация в машинах постоянного тока
- •8.7. Генератор с независимым возбуждением
- •8.8. Генератор с параллельным возбуждением
- •8.9. Генераторы с последовательным и смешанным возбуждением
- •8.10. Параллельная работа генераторов с параллельным
- •8.11. Двигатель с параллельным возбуждением
- •8.12. Двигатель с последовательным возбуждением
- •8.13. Двигатель со смешанным возбуждением
71.15. Двухфазные и однофазные асинхронные двигатели
Если у статора двигателя только одна однофазная обмотка (рис. 7.25), то переменный ток в ней будет возбуждать в машине, пока ее ротор неподвижен, переменное магнитное поле, ось которого тоже неподвижна. Это поле будет индуктировать в обмотке ротора ЭДС, под действием которой в ней возникнут токи. Взаимодействие токов ротора с магнитным полем статора создаст электромагнитные силы F, противоположно направленные в правой и левой половинах ротора, так что результирующий момент, действующий на ротор, окажется равным нулю. Следовательно, при наличии одной обмотки начальный пусковой момент однофазного двигателя равен нулю, т. е. такой двигатель сам с места тронуться не может.
Применяют два способа создания в двигателях, подключаемых к одной фазе сети, начального пускового момента, в соответствии с чем эти двигатели делятся на двухфазные и однофазные.
Рис. 7.25
Двухфазные асинхронные двигатели. Они помимо обмотки, включаемой непосредственно в сеть, имеют вторую обмотку, присоединяемую последовательно с тем или другим фазосдвигающим устройством (конденсатором, катушкой индуктивности). Наиболее выгодным из них является конденсатор (рис. 7.26), и соответствующие двигатели называют конденсаторными. В пазах статора подобных двигателей размещают две фазные обмотки, оси которых смещены в пространстве (относительно друг друга на угол /2). Таким путем выполняется условие получения вращающегося магнитного поля: наличие двух переменных магнитных потоков, смещенных в пространстве и сдвинутых по фазе.
Предпочтительней иметь круговое
вращающееся магнитное поле. Действительно,
если у токов в обмотках статора
и
равные действующие значения, а сдвиг
фаз равен π/2, то у возбуждаемого ими
магнитного поля составляющие Вх
и Ву образуют круговое
результирующее магнитное поле.
Если емкость конденсатора подобрана так, что круговое магнитное поле создается при пуске двигателя, то при номинальной нагрузке изменение тока второй обмотки вызовет изменение напряжения на конденсаторе, а следовательно, и напряжения на второй обмотке по значению и фазе. В результате вращающееся магнитное поле станет эллиптическим (при вращении поток будет пульсировать), что обусловит уменьшение вращающего момента.
За счет усложнения установки — отключения части конденсаторов при переходе от пусковых условий к рабочим (штриховые линии на рис. 7.26) — этот недостаток можно устранить. Уменьшение емкости конденсаторов может быть получено или автоматически центробежным выключателем, срабатывающим, когда частота вращения двигателя достигает 75 — 80 % номинальной, или воздействием реле времени.
Рис. 7.26
Рис. 7.27
Двухфазные двигатели применяются в автоматических устройствах также в качестве управляемых двигателей: частота вращения или вращающий момент регулируется изменением действующего значения или фазы напряжения на одной из обмоток. Такие двигатели вместо обычного ротора с короткозамкнутой обмоткой имеют ротор в виде полого тонкостенного алюминиевого цилиндра («стаканчика»), вращающегося в узком воздушном зазоре между статором и неподвижным центральным сердечником из листовой стали (внутренним статором).
Двигатели с полым ротором обладают ничтожной инерцией, что практически очень важно при регулировании некоторых производственных процессов. На рис. 7.27 показаны зависимости частоты вращения такого двигателя от напряжения на управляющей обмотке при постоянных тормозных моментах.
Однофазные асинхронные двигатели. Они не развивают начального пускового момента. Но если ротор однофазного двигателя раскрутить в любую сторону с помощью внешней силы, то в дальнейшем этот ротор будет вращаться самостоятельно и может развивать значительный вращающий момент.
Сходные условия создаются у трехфазного двигателя при перегорании предохранителя в одной из фаз. В таких условиях однофазного питания трехфазный двигатель продолжает работать. При этом, во избежание сильного нагрева двух обмоток, остающихся включенными, необходимо, чтобы нагрузка двигателя не превышала 50 — 60 % номинальной.
Работу однофазного двигателя можно объяснить, рассматривая переменное магнитное поле как результат наложения двух магнитных полей, вращающихся в противоположные стороны с постоянной угловой скоростью ω/р. Амплитудные значения магнитных потоков этих полей Ф1т и Ф11т одинаковы и равны половине амплитуды магнитного потока переменного поля машины, т. е. Ф1т = Ф11т = = Фт/2. Простое графическое построение (рис. 7.28) показывает, как в результате сложения двух одинаковых магнитных потоков Ф1т и Ф11т вращающихся в противоположные стороны, получается магнитный поток, изменяющийся по синусоидальному закону:
Ф = Фт sinωt.
В однофазном двигателе это справедливо до тех пор, пока ротор неподвижен. Рассматривая переменное поле как складывающееся из двух вращающихся полей, можно заключить, что под действием обоих полей в обмотке ротора будут одинаковые токи. Токи ротора, взаимодействуя с вращающимися полями, создают два одинаковых вращающих момента, направленных в противоположные стороны и уравновешивающих друг друга.
Рис. 7.28
Равенство двух моментов нарушается, если привести ротор во вращение в любом направлении. В этих условиях вращающий момент, создаваемый полем, вращающимся в ту же сторону, что и ротор (короче, прямым полем), становится значительно больше момента, развиваемого обратно вращающимся полем (короче, обратным полем), благодаря чему ротор может не только сам вращаться, но и приводить во вращение какой-либо механизм.
Ослабление противодействующего момента при вращении ротора вызывается ослаблением обратного поля. Относительно этого поля, вращающегося против направления вращения ротора, скольжение ротора
(7.28)
где s1 — скольжение ротора по отношению к прямому полю.
Выражение (7.28) показывает, что частота токов, индуктируемых в роторе обратным полем, относительно высока — близка к удвоенной частоте сети. Для токов такой повышенной частоты индуктивное сопротивление ротора во много раз больше его активного сопротивления, вследствие чего токи, индуктируемые обратным полем, становятся почти чисто реактивными. Поле этих токов (см. рис. 7.17) оказывает размагничивающее действие на поле, их индуктирующее, следовательно, на обратное поле двигателя. В результате при малых скольжениях s, суммарное магнитное поле машины становится почти круговым и противодействующий момент обратного поля достаточно мал.
Учитывая зависимость момента от скольжения для обычного трехфазного асинхронного двигателя, определим результирующий вращающий момент Мвр однофазного двигателя как разность прямого Мвр1 и обратного Мвр11 моментов (рис. 7.29).
Существенной особенностью однофазного двигателя является наличие небольшого отрицательного вращающего момента Мвр0 при синхронной частоте вращения ротора по отношению к прямому полю.
Возрастание скольжения s1 при увеличении нагрузки вызывает у однофазного двигателя увеличение тормозного момента обратного поля, вследствие чего его работа менее устойчива, чем трехфазного. Из-за ряда дополнительных потерь КПД однофазного двигателя значительно ниже, чем трехфазного.
Рис. 7.29
Задача пуска в ход однофазного двигателя решается посредством применения того или другого пускового устройства. Чаще всего это дополнительная обмотка, подобная второй обмотке двухфазного двигателя, рассчитанная на кратковременную нагрузку током и отключаемая по окончании пуска. Последовательно с дополнительной обмоткой включается то или иное фазосдвигающее устройство.
Лекция 15