
- •Вопрос 1 «Предмет и задачи курса»
- •Вопрос 2 « Объект изучения мМиК. Геометрическая классификация твердых тел»
- •Вопрос 3 «Основные допущения о свойствах материала»
- •Вопрос 4 «Связи и опоры. Типы опор. Обозначения. Определение реакций.»
- •Вопрос 5 « Нагрузки. Виды, обозначение, размерность.»
- •Вопрос 6 « Естественные оси координат. Внутренние силовые факторы, правила для их определения, правило знаков.»
- •Вопрос 7 «Эпюры внутренних силовых факторов. Общий порядок построения эпюр.Пример»
- •Алгоритм построения эпюр
- •Вопрос 8 «Правила для проверки эпюр»
- •Вопрос 9 « Понятие о напряжениях. Обозначение, размерность»
- •Вопрос 10 « Понятие о деформациях. Обозначение, размерность»
- •Вопрос 11 «Связь напряжений и деформаций. Закон Гука. Упругие константы материала.» Напряжения и деформации при растяжении и сжатии. Закон Гука
- •Вопрос 12 « Механические характеристики материалов. Опытное определение характеристик. Характеристики прочности и пластичности»
- •Вопрос 13 « Характерные точки и участки диаграммы растяжения. Предельные и допускаемые напряжения.»
- •Вопрос 14 « Геометрические характеристики поперечных сечений»
- •Вопрос 15 « Главные центральные оси и главные центральные моменты инерции»
- •Вопрос 16 «Определение положения главных центральных осей и значений главных центральных моментов инерции»
- •Вопрос 17 «Растяжение (сжатие). Напряжения и перемещения. Условие прочности и жесткости»
- •Вопрос 18 « Кручение. Напряжение и перемещения в брусе круглого поперечного сечения. Условия прочности и жесткости»
- •Кручение
- •Вопрос 19 « Кручение бруса прямоугольного сечения» Кручение бруса прямоугольного сечения
- •Вопрос 20 «Кручение бруса с тонкостенным открытым сечением» Кручение тонкостенного бруса
- •Вопрос 21 «Кручение бруса с тонкостенным закрытым сечением»
- •Вопрос 22 « Рациональная форма поперечного сечения для работы на изгиб»
- •Вопрос 25 « Косой изгиб, некосой изгиб. Расчет на прочность при косом и не косом изгибах»
- •Вопрос 26 « Внецентренное растяжение (сжатие). Расчеты на прочность»
- •Вопрос 27 « Рациональная форма поперечного сечения для работы на изгиб»
- •Вопрос 28 «Основные задачи прочности и алгоритм их решения»
- •Вопрос 29 « Метод Мора для перемещений . Формулы для общего и частных случаев»
- •Вопрос 30 « Алгоритм определения перемещений методом Мора. Знак результата»
- •Вопрос 31 «Способ Верещагина для вычисления интегралов Мора способом Верещагина»
- •Вопрос 32 « Универсальная формула для перемножения эпюр»
- •Вопрос 33 « Основные типы задач жесткости. Алгоритм их решения»
Вопрос 12 « Механические характеристики материалов. Опытное определение характеристик. Характеристики прочности и пластичности»
При проектировании конструкций и расчетах на прочность необходимо знать поведение материалов под нагрузкой. Для этого на специальных машинах проводят испытания образцов, что позволяет определить механические характеристики материала, т. е. характеристики, численно оценивающие его прочность и пластичность
Наибольшее распространение получили опыты на растяжение образцов. Типы и размеры образцов устанавливаются ГОСТом для того, чтобы результаты испытаний, проведенных в разных лабораториях, можно было сравнивать между собой
По краям образцы имеют утолщения для захватов испытательной машины. Расстояние между утолщениями называют рабочей длиной образца
База образца /0 (расчетная длина) помечается рисками, нанесенными на некотором расстоянии от утолщений, что позволяет в соответствии с принципом Сен-Венана считать эту часть образца находящейся в состоянии осевого растяжения.
Испытательная машина такого типа, схема которой показана на рис. 3.2, автоматически вычерчивает график зависимости между растягивающей силой F и удлинением образца Δl, который называют диаграммой растяжения.
Про́чность — свойство материала сопротивляться разрушению под действием внутренних напряжений, возникающих под воздействием внешних сил
Прочность подразделяют на статическую, под действием постоянных нагрузок, динамическую и усталостную (выносливость), имеющую место при действии циклических переменных нагрузок.
Для конструкций различают общую прочность — способность всей конструкции выдерживать нагрузки без разрушения, и местную — та же способность отдельных узлов, деталей, соединений.
В настоящее время при расчёте на прочность используют как расчёт по допускаемым напряжениям, так и расчёт по допускаемому числу циклов нагружения. Основные неравенства расчёта по допускаемым напряжениям:
где
и
— наибольшие расчётные нормальное и касательное напряжения, соответственно;
и
— допускаемые нормальное и касательное напряжения, безопасные для прочности детали.
Пласти́чность — способность материала без разрушения получать большие остаточные деформации. Свойство пластичности имеет решающее значение для таких технологических операций, как штамповка, вытяжка, волочение, изгиб и др. Мерой пластичности являются относительное удлинение δ и относительное сужение ψ, определяемые при проведении испытаний на растяжение. Чем больше δ, тем более пластичным считается материал. По уровню относительного сужения ψ можно делать вывод о технологичности материала. К числу весьма пластичных материалов относятся отожженная медь, алюминий, латунь, золото, малоуглеродистая сталь и др. Менее пластичными являются дюраль и бронза. К числу слабо пластичных материалов относятся многие легированные стали.
У пластичных материалов прочностные характеристики на растяжение и сжатие сопоставляют по пределу текучести. Принято считать, что σт.р≈σт.с.
Деление материалов на пластичные и хрупкие является условным не только потому, что между теми и другими не существует резкого перехода в значениях δ и ψ. В зависимости от условий испытания многие хрупкие материалы способны вести себя как пластичные, а пластичные — как хрупкие.
Очень большое влияние на проявление свойств пластичности и хрупкости оказывают скорость натяжения и температура. При быстром натяжении более резко проявляется свойство хрупкости, а при медленном — свойство пластичности. Например, хрупкое стекло способно при длительном воздействии нагрузки при нормальной температуре получать остаточные деформации. Пластичные же материалы, такие как малоуглеродистая сталь, под воздействием резкой ударной нагрузки проявляют хрупкие свойства.