
- •6.090500 «Судовые энергетические установки и оборудование судов»
- •6.100300 «Эксплуатация судовых энергетических установок»
- •Оглавление
- •Введение
- •1. Термодинамические процессы в идеальном газе
- •Теоретический анализ термодинамических процессов в идеальном газе
- •В координатах p,V и t,s
- •Цикл с политропным расширением, изобарным сжатием и изохорным подводом теплоты
- •И тепловой диаграммах:
- •Цикл с изохорным подводом теплоты, изобарным расширеним и политропным сжатием
- •И тепловой диаграммах:
- •Цикл с адиабатным сжатием, изохорным подводом теплоты, изобарным и политропным расширением
- •И тепловой диаграммах:
- •2. Термодинамические циклы двигателей внутреннего сгорания и газотурбинных установок
- •2.1. Термодинамические циклы двс со смешанным процессом подвода теплоты
- •На рабочей и тепловой диаграммах:
- •На рабочей и тепловой диаграммах:
- •2.2. Термодинамические циклы газотурбинных установок
- •2.2.1. Цикл простой газотурбинной установки
- •2.2.2. Цикл гту с регенерацией теплоты
- •2.2.3. Цикл гту с двухступенчатым сжатием и промежуточным
- •И промежуточным охлаждением воздуха:
- •2.2.4. Цикл гту с двухступенчатым сжатием, промежуточным
- •3. Термодинамические процессы в реальном газе
- •Термодинамический анализ процессов в реальном газе
- •Изохорный процесс
- •Изобарный процесс
- •По заданным значениям давления и удельного объема
- •И температуры с помощью диаграммы h,s
- •Изотермический процесс
- •3.5. Изоэнтропный процесс
- •На энтропийных диаграммах t,s и h,s
- •Степени сухости и давления с помощью диаграммы h,s
- •3.6. Процесс дросселирования
- •3.7. Процесс течения
- •4. Термодинамические циклы паротурбинных установок
- •4.1. Пту, работающая по циклу Ренкина
- •И её термодинамический цикл
- •4.2. Пту с промежуточным перегревом пара
- •С промежуточным перегревом пара
- •4.3. Пту с регенеративным подогревом
- •4.3.1. Пту с регенеративным подогревом питательной воды
- •4.3.2. Пту с регенеративным подогревом питательной воды
- •Питательной воды в подогревателе поверхностного типа
- •4.3.3. Пту с промежуточным перегревом пара и регенеративным
- •С промежуточным перегревом пара и двумя регенеративными подогревателями питательной воды (первый – поверхностный, второй – смесительный)
- •4.3.4. Исследование влияния последовательности
- •С промежуточным перегревом пара и двумя регенеративными подогревателями питательной воды (первый – смесительный, второй – поверхностный)
- •5. Термодинамика влажного воздуха
- •5.1. Основные понятия, определения и соотношения,
- •5.2. Примеры расчета процессов тепломассообмена
- •6. Методические указания к лабораторным работам
- •Для исследования изотермического процесса
- •Результаты измерений
- •Контрольные вопросы
- •Средней изобарной теплоёмкости воздуха
- •Контрольные вопросы
- •Контрольные вопросы
- •Контрольные вопросы
- •При свободной конвекции
- •Измеряемые в опыте величины
- •Контрольные вопросы
На рабочей и тепловой диаграммах:
обозначения в цикле газотурбинного двигателя: I-II – изоэнтропное сжатие
воздухав компрессоре; II-I – изобарный отвод теплоты от наддувочного воздуха; II-III – изобарный подвод теплоты к газу перед турбиной; III-IV – изоэнтропное расширение в турбине;IV-I – изобарный отвод теплоты в окружающую среду в цикле газотурбинного двигателя;
обозначения в цикле ДВС: 1-2 – изоэнтропное сжатиевоздуха в цилиндре дизеля; 2-3 и 3-4 – изохорный и изобарный подвод теплоты к рабочему телу в цилиндре; 4-5 – изоэнтропное расширение в цилиндре; 5-1 – изохорный отвод теплоты от отработавшего газа ДВС
Решение
Комбинированный двигатель состоит из поршневого ДВС и открытой газотурбинной установки (ГТУ), которая используется как для наддува ДВС, так и для производства полезной работы. Термодинамический цикл комбинированного двигателя приведен на рис. 2.2.
В предыдущей задаче 3 начальное давление воздуха в цикле ДВС равно 0,19 МПа и обеспечивается предварительным сжатием подаваемого в цилиндр дизеля воздуха, сжимаемого в компрессоре, обычно работающего на отработавших газах ДВС.
Как известно, в открытой ГТУ теплота к рабочему телу подводится по изобаре (см. рис. 2.2). Тогда
,
где TII — температура воздуха после компрессора, которая определяется из уравнения адиабатного процесса I-II
,
тогда
.
При расчете ТII приняты значения давления 0,1 МПа и температуры ат-мосферного воздуха 20 °С.
Из уравнения для расчета подводимой теплоты в изобарном процессе определяем температуру рабочего тела перед турбиной
.
где кДж/кг – теплота отводимая в цикле ДВС.
Определяем удельный объем в точках I, II и III из уравнения состояния идеального газа
точка
I
точка
II
точка
III
Температура в конце адиабатного расширения газов в турбине (точка IV)
,
тогда
.
Удельный объем газов в конце процесса расширения газов в турбине
.
Теплота, отводимая в цикле ГТУ I-II-III-IV-I
.
Количество теплоты, превращаемой в работу в цикле ГТУ
.
Рассчитаем теперь работу цикла ГТУ путем непосредственного расчета значений работы отдельных процессов через переменные p и v.
Техническая работа:
— получаемая при адиабатном расширении газов в турбине (процесс III-IV)
— затрачиваемая на адиабатное сжатие воздуха в компрессоре (процесс I-II)
.
— изобарных процессов подвода II-III и отвода теплоты IV-I равны нулю.
Суммарная (полезная) работа, получаемая в цикле ГТУ равна
.
Значения работы, рассчитанные двумя способами, практически совпали.
Итак, используя энергию отработавших газов ДВС в комбинированном двигателе, можно дополнительно получать полезную работу помимо работы, используемой для сжатия наддувочного воздуха. В данной задаче такая работа равна 37,67 кДж/кг. Дополнительную работу можно использовать, например, для привода насосов охлаждающей воды главного двигателя судовой дизельной установки. Это повысит эффективность судовой энергетической установки (но несколько усложнит её).