- •6.090500 «Судовые энергетические установки и оборудование судов»
- •6.100300 «Эксплуатация судовых энергетических установок»
- •Оглавление
- •Введение
- •1. Термодинамические процессы в идеальном газе
- •Теоретический анализ термодинамических процессов в идеальном газе
- •В координатах p,V и t,s
- •Цикл с политропным расширением, изобарным сжатием и изохорным подводом теплоты
- •И тепловой диаграммах:
- •Цикл с изохорным подводом теплоты, изобарным расширеним и политропным сжатием
- •И тепловой диаграммах:
- •Цикл с адиабатным сжатием, изохорным подводом теплоты, изобарным и политропным расширением
- •И тепловой диаграммах:
- •2. Термодинамические циклы двигателей внутреннего сгорания и газотурбинных установок
- •2.1. Термодинамические циклы двс со смешанным процессом подвода теплоты
- •На рабочей и тепловой диаграммах:
- •На рабочей и тепловой диаграммах:
- •2.2. Термодинамические циклы газотурбинных установок
- •2.2.1. Цикл простой газотурбинной установки
- •2.2.2. Цикл гту с регенерацией теплоты
- •2.2.3. Цикл гту с двухступенчатым сжатием и промежуточным
- •И промежуточным охлаждением воздуха:
- •2.2.4. Цикл гту с двухступенчатым сжатием, промежуточным
- •3. Термодинамические процессы в реальном газе
- •Термодинамический анализ процессов в реальном газе
- •Изохорный процесс
- •Изобарный процесс
- •По заданным значениям давления и удельного объема
- •И температуры с помощью диаграммы h,s
- •Изотермический процесс
- •3.5. Изоэнтропный процесс
- •На энтропийных диаграммах t,s и h,s
- •Степени сухости и давления с помощью диаграммы h,s
- •3.6. Процесс дросселирования
- •3.7. Процесс течения
- •4. Термодинамические циклы паротурбинных установок
- •4.1. Пту, работающая по циклу Ренкина
- •И её термодинамический цикл
- •4.2. Пту с промежуточным перегревом пара
- •С промежуточным перегревом пара
- •4.3. Пту с регенеративным подогревом
- •4.3.1. Пту с регенеративным подогревом питательной воды
- •4.3.2. Пту с регенеративным подогревом питательной воды
- •Питательной воды в подогревателе поверхностного типа
- •4.3.3. Пту с промежуточным перегревом пара и регенеративным
- •С промежуточным перегревом пара и двумя регенеративными подогревателями питательной воды (первый – поверхностный, второй – смесительный)
- •4.3.4. Исследование влияния последовательности
- •С промежуточным перегревом пара и двумя регенеративными подогревателями питательной воды (первый – смесительный, второй – поверхностный)
- •5. Термодинамика влажного воздуха
- •5.1. Основные понятия, определения и соотношения,
- •5.2. Примеры расчета процессов тепломассообмена
- •6. Методические указания к лабораторным работам
- •Для исследования изотермического процесса
- •Результаты измерений
- •Контрольные вопросы
- •Средней изобарной теплоёмкости воздуха
- •Контрольные вопросы
- •Контрольные вопросы
- •Контрольные вопросы
- •При свободной конвекции
- •Измеряемые в опыте величины
- •Контрольные вопросы
Контрольные вопросы
Объясните принцип действия лабораторной установки и функциональное назначение основных элементов установки.
Каково назначение термостатирующего цилиндра и какую функцию он выполняет при сжатии и расширении воздуха в бюретке?
Какой термодинамический процесс можно исследовать на используемой установке, если выпустить воду из термостатирующего цилиндра и поддерживать в нём вакуум? Какой измерительный прибор необходимо дополнительно установить для этого?
Дайте определения понятиям разрежение, вакуум, избыточное, манометрическое, атмосферное, барометрическое и абсолютное давление. Запишите соотношения, связывающие эти давления.
Поясните назначение измерительных приборов: барометра, вакуумметра, манометра и мановакуумметра? Какое давление подставляется в термодинамические соотношения?
Какие элементы экспериментальной установки образуют дополнительный объём? Является ли он постоянным в опытах, как определяется и от чего зависит?
Перечислите основные единицы измерения давления и запишите соотношения между ними.
Запишите уравнение состояния для 1 кг идеального газа. Объясните физический смысл и размерности параметров, входящих в это уравнение.
Запишите уравнение состояния для 1 киломоля идеального газа. Объясните физический смысл и размерности параметров, входящих в это уравнение.
Какие параметры характеризуют состояние рабочего тела?
Поясните понятия «термические и калорические параметры состояния рабочего тела»?
Изобразите на диаграммах p, и Т,s изотермический и адиабатный процессы сжатия идеального газа, исходящие из общей точки. В каком из этих процессов затрачивается больше технической работы при сжатии до одного и того же давления?
Изобразите на диаграммах p, и Т,s изотермический и адиабатный процессы расширения идеального газа, исходящие из общей точки. В каком из этих процессов получается больше деформационной работы при расширении до одного и того же объёма?
Какими единицами измерения может быть задано количество вещества, участвующего в процессе? Каковы соотношения между величинами, задаваемыми этими единицами?
Как соотносятся между собой теплота и работа в изотермическом процессе? Как можно организовать изотермическое сжатие воздуха в компрессоре?
Какая разница между параметрами состояния и функциями процесса? Какие из этих величин характеризуют состояние рабочего тела?
Лабораторная работа № 2 посвящена экспериментальному определению средней изобарной теплоемкости воздуха. Как известно, теплоемкость − это количество теплоты, необходимое для нагрева единицы количества вещества на один градус в данном термодинамическом процессе. В зависимости от метода определения различают истинную и среднюю теплоемкости.
Истинная теплоемкость − производная от количества теплоты δq по температуре dT (dt) в данном термодинамическом процессе
|
(6.5) |
Истинная теплоемкость изображается на диаграмме T,s подкасательной (с) к кривой процесса в данной точке А (рис. 6.2).
Средняя теплоемкость − количество теплоты q, которое необходимо подвести к единице количества вещества в данном термодинамическом процессе (либо отвести от вещества), чтобы повысить (понизить) его температуру от t1 до t2. Этой формулировке соответствует математическая запись
|
(6.6) |
Истинная и средняя теплоемкости в общем случае − функции процесса. Однако они становятся функциями состояния, когда задан термодинамический процесс. |
|
Рис 6.2. Определение истинной теплоемкости рабочего тела с помощью диаграммы T,s
Средняя теплоемкость в данном процессе может быть определена экспериментально, а истинная рассчитана по (6.5).
Как известно, количество вещества, участвующего в процессе, может быть задано в килограммах, киломолях и нормальных кубических метрах. Поэтому различают массовую, мольную и объемную теплоемкости, имеющие соответственно размерности Дж/(кг·К), Дж/(кмоль·К) и Дж/(нм3·К).
Теплоемкость реального газа в заданном термодинамическом процессе зависти от двух параметров состояния. Чаще всего её представляют в табличном виде в зависимости от температуры и давления либо от температуры и удельного объема (реже). Теплоемкость идеального газа зависит только от температуры c = ƒ(T).
В рамках упрощенной молекулярно-кинетической теории (МКТ) зависимость теплоемкости от температуры не учитывают, а учитывают только её зависимость от строения молекулы вещества, а именно, от количества атомов в молекуле рассматриваемого газа. По этой концепции изохорная и изобарная теплоемкости вещества рассчитываются из соотношений
,
,
где j − количество вращательных внутримолекулярных степеней свободы,
R − удельная газовая постоянная рассматриваемого газа, Дж/(кг·К).
Для одноатомных молекул j = 0, двухатомных 2, трех- и многоатомных 3.
Количество теплоты, подводимое к рабочему телу массой М в заданном термодинамическом процессе (х = const) при изменении температуры от t1 до t2 может быть рассчитано из соотношения
.
В данной лабораторной работе определяется средняя изобарная теплоемкость воздуха, так как его давление при нагреве в лабораторной установке не изменяется.
Принципиальная схема установки приведена на рис. 6.3. Установка состоит из: проточного калорифера 1, электронагревателя 2, автотрансформатора 3, электровентилятора 4, газового расходомера 5, вольтметра 6 и амперметра 7. Кроме того, в лаборатории имеются барометр и секундомер для измерения атмосферного давления и продолжительности опытов.
Рис. 6.3. Схема установки для определения
