Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ENOIT_Otvety_1.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
939.86 Кб
Скачать

19.Основные понятия термодинамики. Первое и второе начало термодинамики.

Термодина́мика (греч. θέρμη — «тепло», δύναμις — «сила») — раздел физики, изучающий соотношения и превращения теплоты и других форм энергии. В отдельные дисциплины выделились химическая термодинамика, изучающая физико-химические превращения, связанные с выделением или поглощением тепла, а также теплотехника.

В термодинамике имеют дело не с отдельными молекулами, а с макроскопическими телами, состоящими из огромного числа частиц. Эти тела называются термодинамическими системами. В термодинамике тепловые явления описываются макроскопическими величинами — давление, температура, объём, …, которые не применимы к отдельным молекулам и атомам.

Начала термодинамики — совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал.

Первое начало термодинамики представляет собой закон сохранения энергии в применении к термодинамическим системам.

Второе начало термодинамики накладывает ограничения на направление термодинамических процессов, запрещая самопроизвольную передачу тепла от менее нагретых тел к более нагретым. Также формулируется как закон возрастания энтропии.

20.Синтез органических и неорганических соединений. Биосинтез. Применение синтезированных соединений в технике и технологиях.

Синтез — процесс соединения или объединения ранее разрозненных вещей или понятий в целое или набор.

Название органические вещества появилось на ранней стадии развития химии во время господства виталистических воззрений, продолжавших традицию Аристотеля и Плиния Старшего о разделении мира на живое и неживое. Вещества при этом разделялись на минеральные — принадлежащие царству минералов, и органические — принадлежащие царствам животных и растений. Считалось, что для синтеза органических веществ необходима особая «жизненная сила» (лат. vis vitalis), присущая только живому, и поэтому синтез органических веществ из неорганических невозможен. Это представление было опровергнуто Фридрихом Вёлером в 1828 году путём синтеза «органической» мочевины из «минерального» цианата аммония, однако деление веществ на органические и неорганические сохранилось в химической терминологии и по сей день.

Количество известных органических соединений составляет почти 27 млн

В этой статье не хватает ссылок на источники информации.

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.

Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.

Эта отметка установлена 22 марта 2012.

Таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной — двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, то есть стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).

Биосинтез

Среди природных веществ есть регуляторы роста растений и насекомых, органические соединения, используемые насекомыми в качестве средств коммуникации, пестициды, антибиотики, витамины и многие целебные вещества. Природное соединение сначала необходимо обнаружить, затем выделить его химическим путем, потом определить его структуру и свойства и, наконец, произвести заданный синтез.

Часто химики стремятся получить только одну нужную форму из двух, являющихся зеркальным отражением друг друга. Каждый атом углерода, с которым связаны различные группы атомов, порождает пару симметричных зеркальных структур и называется хиральным атомом или хиральным центром. Характерный пример выделения только одной зеркальной формы – синтез антибиотиков. В природе встречается около 50 соединений подобного типа, среди них самое известное – монензин, продуцируемый штаммом бактерий. Антибиотики такого типа (монензин, лазалоцид, салиномицин) широко применяются для борьбы с инфекционными заболеваниями в бройлерном производстве. В США ежегодно продают примерно на 50 млн. долл. монензина. Монензин включает 26 атомов углерода, 17 хиральных центров, что означает возможность существования 217 различных стереоизомеров. Поэтому для осуществления синтеза монензина необходимы высокостереоселективные реакции. Производство монензина и его структурных аналогов – крупное достижение современного биосинтеза.

Важным средством экспериментального изучения биосинтеза стало применение изотопных меток для обычных элементов, таких как изотопы углерода 13С и 14С, водорода 2Н и ЗH, азота 15N и кислорода 17О. Природный изотоп в определенном положении молекулы реагента замещают на изотопную метку, и после реакции определяют место расположения данной метки в молекуле продукта реакции. Для чего применяется метод спектроскопии ядерного магнитного резонанса. Такой метод позволил определить схему биосинтеза сильных ядов, вырабатываемых грибами, которые поражают зерно и другие продовольственные товары.

При исследовании строения биополимеров – гигантских молекул белков и нуклеиновых кислот, синтезируемых живыми организмами, возникают те же проблемы, что и при изучении природных соединений с меньшей молекулярной массой. Белки выполняют различные биологические функции: участие в пищеварении, транспорт кислорода в крови, сокращение мышечных волокон, защита от вирусов и бактерий с помощью антител и т. п. Сложная пространственная форма белков во многом определяет их биологические функции. Так, молекула коллагена – белка, придающего прочность коже и костям, – имеет форму стержня. Антитела представляют собой молекулы с выемками Y-образной формы, которые заполняются молекулами чужеродных веществ и служат для запуска реакций, обеспечивающих их эффективное обезвреживание.

Белки – высокодинамические системы, которые при осуществлении биологических функций способны менять форму. Например, свет вызывает изменение формы родопсина – белка сетчатки глаза, что и является первичной стадией зрительного восприятия. Такое изменение происходит в течение менее одной миллиардной доли секунды. Подобные процессы в молекулах белков обнаруживаются с помощью импульсных лазеров.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]