
- •14.Естественно-научные основы лазерных технологий. Особенности лазерного излучения. Применение лазеров в технике и технологиях.
- •15.Современные представления об эволюции Вселенной, галактик, звезд и звездных систем.
- •16.Солнечная система. Законы небесной механики - законы Кеплера. Солнечно-земные связи. Учение а. Л. Чижевского. Ракетно-космические технологии.
- •17.Гравитационное взаимодействие тел. Закон всемирного тяготения Ньютона. Космические скорости.
- •18.Саморганизация в живой и неживой материи. Синергетика и ее применение в технике и технологиях.
- •19.Основные понятия термодинамики. Первое и второе начало термодинамики.
- •20.Синтез органических и неорганических соединений. Биосинтез. Применение синтезированных соединений в технике и технологиях.
- •21.Электрический заряд и электрическое поле, законы электростатики и их применение в технике и технологиях. Напряженность магнитного поля и закон полного тока. Энергия магнитного поля.
- •23.Геометрическая оптика и волновая теория света. Дисперсия, явления интерференции и дифракции, поляризация и их применение в технике и технологиях.
- •24.Металлургические технологии.
- •25.Классификация двигателей и принципы их работы.
- •26.Информационные технологии. Суперкомпьютер. Нейтронные сети. Технологические возможности реализации высокой информационной плотности.
- •27.Энергетическое машиностроение. Станкостроение. Робототехника.
- •28.Наночастицы. Нанотехнологии. Нанолитография. Наномедицина. Нанобиоэлектроника. Молекулярная самосборка. Наноматериалы.
- •29.Машиностроительные технологии.
- •30.Основные научные достижения в биологии и генетике. Роль днк и рнк в системе управления генетической информацией. Наследственность и изменчивость.
- •31.Ген. Геном. Генотип. Генная инженерия. Клонирование.
- •32.Биотехнологии - прикладное направление современной биологии. Применение биотехнологий в различных отраслях народного хозяйства.
- •33.Технологии строительства.
- •34.Развитие химических технологий. Химические процессы. Виды катализа. Применение катализа в химических технологиях.
- •35.Транспортные технологии. Экономичный автомобиль. Виды транспорта авиа, автомобильный, железнодорожный, речной, морской, трубопроводный и их характеристика.
30.Основные научные достижения в биологии и генетике. Роль днк и рнк в системе управления генетической информацией. Наследственность и изменчивость.
Основные научные достижения в биологии и генетике:
1. закономерность образования пола животных (3 декабря 1947 - Б.Л.Астауров)
2. периодическая функция ядер в развитии организма животных (20 декабря 1958 - А.А.Нейфах)
3. явление синтеза ДРНК (рибонуклеиновой кислоты нового класса) в ядрах клеток высших организмов (27 октября 1961 - Г.П.Гергиев, В.Л.Мантьева)
4. свойства живчиков млекопитающих сохранять биологическую полноценность после быстрого замораживания (1 июня 1947 - В.К.Милованов, И.И.Соколовская, И.В.Смирнов)
5. свойство экзогенных ДНК (дезоксирибонуклеиновых кислот) вызывать избирательные мутации генов (28 июля 1947 - С. М. Гершензон)
6. Значение нуклеиновых кислот очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса в цитоплазму и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой клетке. Белки обуславливают большинство свойств и признаков клеток.
Существуют два типа кислот: ДНК и РНК.
ДНК (дезоксирибонуклеиновая кислота) — биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г), пятиатомный сахар пентозу — дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов.
РНК (рибонуклеиновая кислота), так же как и ДНК представляет собой полимер, мономерами которого служат нуклеотиды. Азотистые основания те же самые, что входят в состав ДНК (аденин, гуанин, цитозин), четвертое — урацил — присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК содержат вместо дезоксирибозы другую пентозу — рибозу. В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого.
Известны двух — и одно цепочечные молекулы РНК. Двухцепочечные РНК служат для хранения и воспроизведения наследственной информации у некоторых вирусов, т.е. у них выполняется функции хромосом. Одноцепочечные РНК осуществляют перенос информации о последовательности аминокислот в белках от хромосомы к месту их синтеза и участвуют в процессах синтеза.
Наследственность и изменчивость являются одними из определяющих факторов эволюции органического мира.
Наследственность — это свойство живых организмов сохранять и передавать потомству особенности своего строения и развития. Благодаря наследственности из поколения в поколение сохраняются признаки вида, сорта, породы, штамма. Связь между поколениями осуществляется при размножении через гаплоидные или диплоидные клетки (см. разделы «Ботаника» и «Зоология»). Из органоидов клетки ведущая роль в наследственности принадлежит хромосомам, способным к самоудвоению и формированию с помощью генов всего комплекса характерных для вида признаков (см. главу «Клетка»). В клетках каждого организма содержатся десятки тысяч генов. Вся их совокупность, характерная для особи вида, называется генотипом.
Изменчивость противоположна наследственности, но неразрывно с ней связана. Она выражается в способности организмов изменяться. Благодаря изменчивости отдельных особей популяция оказывается разнородной. Дарвин различал два основных типа изменчивости.
Ненаследственная изменчивость (см. о модификациях в главе «Основы генетики и селекции») возникает в процессе индивидуального развития организмов под влиянием конкретных условий среды, вызывающих у всех особей одного вида сходные изменения, поэтому Дарвин эту изменчивость назвал определенной. Однако степень таких изменений у отдельных индивидуумов может быть различной. Например, у травяных лягушек низкие температуры вызывают темную окраску, но интенсивность ее у разных особей различна. Дарвин считал модификации не существенными для эволюции, так как они, как правило, не наследуются.
Наследственная изменчивость (см. о мутациях в главе «Основы генетики и селекции») связана с изменением генотипа особи, поэтому возникшие изменения наследуются. В природе мутации появляются у единичных особей под влиянием случайных внешних и внутренних факторов. Характер их предсказать трудно, поэтому Дарвин эту изменчивость. назвал неопределенной. Мутации бывают незначительными и существенными и затрагивают различные признаки и свойства. Например, у дрозофилы под влиянием рентгеновских лучей изменяются крылья, щетинки, окраска глаз и тела, плодовитость и т. д. Мутации могут быть полезными, вредными и безразличными для организма.
К наследственной изменчивости относится комбинативная изменчивость. Она возникает при свободных скрещиваниях в популяциях или при искусственной гибридизации. В результате рождаются особи с новыми сочетаниями признаков и свойств, отсутствовавшими у родителей (см. о дигибридном скрещивании, новообразованиях при скрещиваниях, перекресте хромосом в главе «Основы генетики и селекции»). Соотносительная изменчивость также наследственна; она выражается в том, что изменение одного органа вызывает зависимые изменения других (см. в главе «Основы генетики и селекции» множественное действие гена). Например, у гороха с пурпурными цветками всегда с таким же оттенком черешки и жилки листьев. У болотных птиц длинные конечности и шея всегда сопровождаются длинными клювом и языком. Наследственную изменчивость Дарвин считал особенно важной для эволюции, так как она служит материалом для естественного и искусственного отборов при образовании новых популяций, видов, сортов, пород и штаммов.