
- •Исторически обзор теории алгоритмов
- •Определение машины Тьюринга
- •Тезис Черча-Тьюринга
- •Машина Маркова
- •Нумерация мт
- •Пример невычислимой функции, построенной по методу диагонализации Кантора.
- •Распознающие машины Тьюринга и языки. Проблема распознавания языков.
- •Неразрешимость проблемы самоприменимости.
- •Неразрешимость проблемы остановки.
- •Другие примеры неразрешимых алгоритмически задач.
- •Методы задания машин Тьюринга.
- •Граф-схемы и их связь диаграммой состояний автоматов.
- •Рекурсивные функции и их построение из простейших.
- •Операторы подстановки, рекурсии и минимизации. Частично рекурсивные функции.
- •Тезис Черча.
- •Рекурсивно перечислимые множества. Связь между рекурсивной перечислимостью и рекурсивностью.
- •Сложность. Подходы к определению сложности алгоритмов.
- •Алгоритмическая, информационная и инфологическая сложность.
- •19. Понятие вычислительной сложности. Примеры ее определения.
- •20. Детерминированная и недетерминированная машина Тьюринга.
- •21. Класс p и np.
- •22. Классысо-np, pspace, npspace.
- •23. Задача выполнимость и теорема с.Кука о полноте задачи выполнимость.
- •24. Другие np-полные задачи. Примеры сводимости в классе np.
- •25. Метод резолюции Робинсона для задачи выполнимость.
- •26. Метод отсечение литер для задачи выполнимость.
- •27. Метод групповых резолюций для задачи выполнимость.
- •28. Гипотеза p≠pn и ее обоснование.
- •29. Дерево решений. Эвристическая оценочная функция.
- •30. Распознавание регулярных языков.
19. Понятие вычислительной сложности. Примеры ее определения.
В информатике и теории алгоритмов вычислительная сложность алгоритма — это функция, определяющая зависимость объёма работы, выполняемой некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения проблемы, тогда как пространство определяется объёмом памяти или места на носителе данных. Таким образом, в этой области предпринимается попытка ответить на центральный вопрос разработки алгоритмов: «как изменится время исполнения и объём занятой памяти в зависимости от размера входа и выхода?». Здесь под размером входа понимается длина описания данных задачи в битах (например, в задаче коммивояжера длина входа пропорциональна количеству городов и дорог между ними), а под размером выхода — длина описания решения задачи (оптимального маршрута в задаче коммивояжера).
В частности, теория сложности вычислений определяет NP-полные задачи, которые недетерминированная машина Тьюринга может решить за полиномиальное время, тогда как для детерминированной машины Тьюринга полиномиальный алгоритм неизвестен. Обычно это сложные проблемы оптимизации, например, задача коммивояжера(Задача коммивояжёра (англ. Travellingsalesmanproblem, TSP) (коммивояжёр — разъездной сбытовой посредник) — одна из самых известных задачкомбинаторной оптимизации, заключающаяся в отыскании самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута (кратчайший, самый дешёвый, совокупный критерий и т. п.) и соответствующие матрицы расстояний, стоимости и т. п. Как правило, указывается, что маршрут должен проходить через каждый город только один раз — в таком случае выбор осуществляется среди гамильтоновых циклов.).
20. Детерминированная и недетерминированная машина Тьюринга.
Детерминированная машина Тьюринга имеет функцию перехода, которая по комбинации текущего состояния и символа на ленте определяет три вещи: символ, который будет записан на ленте, направление смещения головки по ленте и новое состояние конечного автомата. Например, X на ленте в состоянии 3 однозначно определяет переход в состояние 4, запись на ленту символа Y и перемещение головки на одну позицию влево.
В случае недетерминированной машины Тьюринга, комбинация текущего состояния автомата и символа на ленте может допускать несколько переходов. Например, X на ленте и состояние 3 допускает как состояние 4 с записью на ленту символа Y и смещением головки вправо, так и состояние 5 с записью на ленту символа Z и смещением головки влево.
Как НМТ «узнаёт», какой из возможных путей приведёт в допускающее состояние? Есть два способа это представить.
Можно считать, что НМТ — «чрезвычайно удачлива»; то есть всегда выбирает переход, который в конечном счете приводит к допускающему состоянию, если такой переход вообще есть.
Можно представить, что в случае неоднозначности перехода (текущая комбинация состояния и символа на ленте допускает несколько переходов) НМТ делится на копии, каждая из которых следует за одним из возможных переходов.
То есть в отличие от ДМТ, которая имеет единственный «путь вычислений», НМТ имеет «дерево вычислений» (в общем случае — экспоненциальное число путей). Говорят, что НМТ допускает входные данные, если какая-нибудь ветвь этого дерева останавливается в допускающем состоянии, иначе НМТ входные данные не допускает. (Таким образом, ответы «ДА» и «НЕТ» в случае недетерминированных вычислений несимметричны.)
Определение
Более формально, недетерминированная
машина Тьюринга — это шестёрка объектов
,
где
Q — конечное множество состояний
Σ — конечное множество символов (алфавит ленты)
— начальное состояние
— символ пробела (
)
— конечное множество допускающих состояний
— многозначное отображение из пары состояние-символ, называемое функцией перехода.
Эквивалентность с ДМТ
Интуитивно кажется, что НМТ более мощные, чем ДМТ, так как они выполняют несколько возможных вычислений сразу, требуя только, чтобы хоть одно из них заканчивалось в допускающем состоянии. Однако любой язык, допускающийся НМТ, также допускается ДМТ: ДМТ может моделировать любой переход НМТ, делая многократные копии состояния, если встречается неоднозначность.
Очевидно, что это моделирование требует значительно больше времени. Насколько больше — неизвестно. В частном случае ограничения по времени в виде полинома от длины входа этот вопрос представляет собой классическую задачу «P = NP» (см. классы сложности P и NP).
Класс алгоритмов, выполняемых за полиномиальное время на недетерминированных машинах Тьюринга, называется классом NP.
Пример
Рассмотрим задачу проверки того что данное b-разрядное целое число N (2b-1≤N<2b) является составным. Тогда b — длина входных данных, по отношению к которому рассматривается время вычисления. Ответ «ДА» — число составное и «НЕТ» — простое. Эта задача является комплементарной к тесту на простоту.
Недетерминированный алгоритм для этой задачи может быть например следующий:
Выбрать недетерминированно целое число m такое что 1<m<N.
Разделить нацело N на m, остаток обозначим через a.
Если a=0 выдать ответ «ДА» (m тогда — делитель N), иначе выдать ответ «НЕТ».
(Алгоритм написан не непосредственно в виде определения машины Тьюринга.)
Во времени вычисления этого алгоритма определяющей частью является время выполнения деления, которое может быть выполнено за O(b2) шагов, что представляет собой полиномиальное время. Таким образом задача находится в классе NP.
Для реализации такого времени вычисления, требуется удачно выбирать число m, или выполнять вычисления по всем возможным путям (для всех возможных m) одновременно на множестве копий машины.
Если моделировать этот алгоритм на детерминированной машине Тьюринга, пробуя по очереди все возможные варианты, требуется проверить N-2=O(2b) ветвей. Таким образом общее время вычислений будет O(b22b) шагов, что представляет собой уже экспоненциальное время, которое существенно больше чем полиномиальное время. Таким образом этот алгоритм не попадает в класс P. (Однако, могут быть применены другие, более быстрые алгоритмы для этой задачи, которые работают за полиномиальное время, и таким образом задача попадает в класс P.)